世界の無機シンチレータ市場(~2030年):種類別(ハロゲン化アルカリ、酸化物化合物、希土類金属、その他)、材料別、用途別、エンドユーザー別、地域別

【英語タイトル】Inorganic Scintillators Market Forecasts to 2030 – Global Analysis By Type (Alkali Halides, Oxide Compounds, Rare Earth Metals and Other Types), Material, Application, End User and By Geography

Stratistics MRCが出版した調査資料(SMRC24NOV398)・商品コード:SMRC24NOV398
・発行会社(調査会社):Stratistics MRC
・発行日:2024年10月
・ページ数:200 Pages
・レポート言語:英語
・レポート形式:PDF
・納品方法:Eメール
・調査対象地域:グローバル
・産業分野:化学
◆販売価格オプション(消費税別)
Single User LicenseUSD4,150 ⇒換算¥630,800見積依頼/購入/質問フォーム
Corporate LicenseUSD7,500 ⇒換算¥1,140,000見積依頼/購入/質問フォーム
販売価格オプションの説明
※お支払金額:換算金額(日本円)+消費税
※納期:即日〜2営業日(3日以上かかる場合は別途表記又はご連絡)
※お支払方法:納品日+5日以内に請求書を発行・送付(請求書発行日より2ヶ月以内に銀行振込、振込先:三菱UFJ銀行/H&Iグローバルリサーチ株式会社、支払期限と方法は調整可能)
❖ レポートの概要 ❖

Stratistics MRCによると、世界の無機シンチレータ市場は2024年に5億6,110万ドルを占め、2030年には9億6,190万ドルに達すると予測されています。無機シンチレータとして知られる材料は、粒子線、ガンマ線、X線などの電離放射線に接触すると光を放出する元素です。通常、ゲルマニウム酸ビスマス、ヨウ化セシウム、ヨウ化ナトリウムなどの無機結晶が使用されます。これらの結晶は放射線に反応して電子を励起し、紫外線や可視光を放出します。
市場ダイナミクス:

ドライバー:

推進要因:医療分野における放射線検出の需要拡大

効果的な放射線検出により、特に陽電子放射断層撮影や単一光子放射コンピュータ断層撮影などのヘルスケア用途で無機シンチレータの需要が増加しています。これらの物質は、高エネルギー放射線を可視光に変換することにより、画像診断システムにおいて重要な役割を果たしています。シンチレータ技術の技術開発により、性能、感度、堅牢性が向上し、より幅広い医療用途への利用が促進され、市場拡大が促進されます。

阻害要因

有機シンチレータとの競合

有機シンチレータは安価で製造が簡単なため、ますます普及が進んでおり、最終的には無機シンチレータのシェアが低下する可能性があります。無機シンチレータに含まれる有害元素の使用を規制する環境法の強化も、この変化に影響を及ぼしています。これらの法律は無機製品の市場を制限し、コンプライアンス費用を増加させる可能性があります。顧客は有機材料を好むかもしれません。

機会:

国家安全保障と防衛における使用の増加

世界的な安全保障に対する脅威の増大と防衛用途における効率的な放射線検出システムの必要性から、無機シンチレータの需要はますます高まっています。これらのシンチレータは電離放射線の検出と測定に不可欠であり、国境警備や核の脅威の検出などの国土安全保障用途に不可欠です。先進的な放射線検出システムは、防衛技術に対する政府予算の増加により投資が増加しています。

脅威

原料の入手可能性の制限

ルテチウム、イットリウム、ビスマスなどの希土類元素は高価で入手が困難であり、無機シンチレータに頻繁に使用されます。その結果、利益率が低下し、製造経費が増加します。サプライチェーンが不安定になると、シンチレータの製造や納品に遅れが生じます。そのような中断の例としては、地政学的緊張、貿易制限、中国のような重要な場所での環境法などがあります。

COVID-19の影響:

COVID-19の流行は無機シンチレータ市場に大きな影響を与え、生産とサプライチェーンの混乱を引き起こしました。ロックダウンは製造施設の一時閉鎖につながり、主要プロジェクトの遅延と市場成長の鈍化をもたらしました。さらに、パンデミックは、社会的遠ざけ策や健康上の懸念から製造工場に人員的制約をもたらし、生産プロセスや効率性を阻害しました。医療用画像を含むいくつかの分野では、市場の不安定性と需要の変化により、需要が拡大する一方で下落し、在庫管理に影響しました。

予測期間中、ハロゲン化アルカリセグメントが最大になる見込み

予測期間中、ハロゲン化アルカリセグメントが最大の市場シェアを記録すると予測されるのは、ハロゲン化アルカリの研究により、これらの材料の応用範囲が広がり、減衰時間や光収率などの性能属性が向上しているため。有害物質使用制限(RoHS)規制を遵守する必要性などの環境要因は、材料の選択や製造方法に影響を与える可能性があります。このため、メーカーは性能要件を満たしつつ、より安全な代替品を選択せざるを得なくなります。

予測期間中、医療用画像処理分野のCAGRが最も高くなる見込み

予測期間中、医療用画像処理分野は最も高いCAGRで成長すると予想されます。これは、慢性疾患や癌の診断件数の増加により、早期かつ正確な診断が必要となり、高度な画像処理装置の需要が高まっているためです。これらのシステムは、ナトリウムやヨウ化セシウムなどの無機シンチレータを必要とするため、シンチレータ材料の市場は増加します。解像度、感度、スピードといった医療用画像処理技術の向上には、より効果的で高性能な無機シンチレータが必要であり、これが市場の拡大に拍車をかけています。

最大シェアの地域:

北米地域が予測期間中に最大の市場シェアを占めると予測されています。慢性疾患が一般的になりつつあり、早期診断が不可欠であるため、無機シンチレータはPETスキャナーやCTスキャナーなどの医療用イメージング技術に不可欠です。アメリカは国家安全保障と核脅威の検知に重点を置いているため、放射線検出システムへの投資が増加しており、正確かつ効率的な性能を実現するために主に無機シンチレータが使用されています。

CAGRが最も高い地域:

アジア太平洋地域は、中国、日本、インド、韓国による医療インフラへの投資により、PETスキャナーやCTスキャナーなどの医療用画像処理技術の需要が高まっているため、予測期間を通じて有利な成長率を示すと予測されています。これらの装置には無機シンチレータが不可欠であり、市場の拡大を後押ししています。アジア太平洋地域では原子力エネルギーへの依存度が高まっているため、無機シンチレータは特に中国とインドで放射線のモニタリングと検出のために必要とされています。

市場の主要プレーヤー

無機シンチレータ市場の主要企業には、Alkor Technologies, Alpha Spectra Inc, Berkeley Nucleonics Corporation, Detec, Dynasil Corporation, Electro-Optics Technology Co Ltd, Epic Crystals Co Ltd, Hamamatsu Photonics K.K., Hellma Gmbh & Co.KG, Hitachi Ltd, Nihon Kessho Kogaku Co Ltd, Omega Piezo Technologies, Rexon Components, Inc., Saint-Gobain, Scintacor , Shanghai SICCAS High Technology Coporation, Thermo Fisher Scientific Inc and Toshiba Materials Co Ltd.

主な動向:

2024年10月、サーモフィッシャーサイエンティフィック社は、125,000個のInvitrogen™抗体により持続可能な包装を導入。サーモフィッシャーサイエンティフィックは、機能試験と安定性試験を通じて、インビトロジェン抗体ポートフォリオの大部分を輸送中も常温条件で維持できることを実証しました。

2024年10月、サーモフィッシャーサイエンティフィック社は、誘導結合プラズマ質量分析法(ICP-MS)による微量元素分析を簡素化するThermo Scientific™ iCAP™ MX Series ICP-MSを発売しました。この発売には、新しいシングル四重極Thermo Scientific iCAP MSX ICP-MSとトリプル四重極が含まれます。

2024年9月、日立はロボットおよびオートメーション技術のリーディングプロバイダーであるドイツのMAマイクロオートメーションの買収を完了。JRオートメーションとMAマイクロオートメーションは、ともに高い認知度を誇る強力なブランドであり、今後も既存の社名で事業を継続します。

対象となる種類
– ハロゲン化アルカリ
– 酸化物化合物
– 希土類金属
– その他の種類

対象材料
– ヨウ化セシウム
– ヨウ化ナトリウム
– ゲルマニウム酸ビスマス
– 臭化ランタン (LaBr3)
– セリウムドープオキシオルトケイ酸ルテチウム(LSO:Ce)
– フッ化バリウム(BaF2)
– 臭化セリウム(CeBr3)
– ガドリニウムオルソシリケート(GSO)
– その他の材料

対象アプリケーション
– メディカルイメージング
– 国土安全保障と防衛
– 原子力発電所
– 放射線防護
– 石油探査
– その他の用途

対象エンドユーザー
– ヘルスケア
– エネルギー分野
– 産業分野
– その他のエンドユーザー

対象地域
– 北米
アメリカ
カナダ
メキシコ
– ヨーロッパ
ドイツ
イギリス
イタリア
フランス
スペイン
その他のヨーロッパ
– アジア太平洋
日本
中国
インド
オーストラリア
ニュージーランド
韓国
その他のアジア太平洋地域
– 南米
アルゼンチン
ブラジル
チリ
その他の南米諸国
– 中東・アフリカ
サウジアラビア
アラブ首長国連邦
カタール
南アフリカ
その他の中東・アフリカ

レポート内容
– 地域および国レベルセグメントの市場シェア評価
– 新規参入企業への戦略的提言
– 2022年、2023年、2024年、2026年、2030年の市場データをカバー
– 市場動向(促進要因、制約要因、機会、脅威、課題、投資機会、推奨事項)
– 市場予測に基づく主要ビジネスセグメントにおける戦略的提言
– 主要な共通トレンドをマッピングした競合のランドスケープ
– 詳細な戦略、財務状況、最近の動向を含む企業プロファイリング
– 最新の技術的進歩をマッピングしたサプライチェーン動向

グローバル市場調査レポート販売サイトのwww.marketreport.jpです。

❖ レポートの目次 ❖

1 エグゼクティブ・サマリー
2 序文
2.1 概要
2.2 ステークホルダー
2.3 調査範囲
2.4 調査方法
2.4.1 データマイニング
2.4.2 データ分析
2.4.3 データの検証
2.4.4 リサーチアプローチ
2.5 リサーチソース
2.5.1 一次調査ソース
2.5.2 セカンダリーリサーチソース
2.5.3 前提条件
3 市場動向分析
3.1 はじめに
3.2 推進要因
3.3 抑制要因
3.4 機会
3.5 脅威
3.6 アプリケーション分析
3.7 エンドユーザー分析
3.8 新興市場
3.9 Covid-19の影響
4 ポーターズファイブフォース分析
4.1 供給者の交渉力
4.2 買い手の交渉力
4.3 代替品の脅威
4.4 新規参入の脅威
4.5 競争上のライバル関係
5 無機シンチレータの世界市場(タイプ別
5.1 はじめに
5.2 アルカリハライド
5.3 酸化物化合物
5.4 希土類金属
5.5 その他のタイプ
6 無機シンチレータの世界市場:材料別
6.1 はじめに
6.2 ヨウ化セシウム
6.3 ヨウ化ナトリウム
6.4 酸化ゲルマニウムビスマス
6.5 臭化ランタン(LaBr3)
6.6 セリウム添加オキシオルトケイ酸ルテチウム(LSO:Ce)
6.7 フッ化バリウム(BaF2)
6.8 臭化セリウム(CeBr3)
6.9 ガドリニウムオルトケイ酸塩(GSO)
6.10 その他の材料
7 無機シンチレータの世界市場、用途別
7.1 はじめに
7.2 医療イメージング
7.3 国土安全保障・防衛
7.4 原子力発電所
7.5 放射線防護
7.6 石油探査
7.7 その他の用途
8 無機シンチレータの世界市場(エンドユーザー別
8.1 はじめに
8.2 ヘルスケア
8.3 エネルギー分野
8.4 産業用
8.5 その他のエンドユーザー
9 無機シンチレータの世界市場:地域別
9.1 はじめに
9.2 北米
9.2.1 アメリカ
9.2.2 カナダ
9.2.3 メキシコ
9.3 ヨーロッパ
9.3.1 ドイツ
9.3.2 イギリス
9.3.3 イタリア
9.3.4 フランス
9.3.5 スペイン
9.3.6 その他のヨーロッパ
9.4 アジア太平洋
9.4.1 日本
9.4.2 中国
9.4.3 インド
9.4.4 オーストラリア
9.4.5 ニュージーランド
9.4.6 韓国
9.4.7 その他のアジア太平洋地域
9.5 南米
9.5.1 アルゼンチン
9.5.2 ブラジル
9.5.3 チリ
9.5.4 その他の南米地域
9.6 中東・アフリカ
9.6.1 サウジアラビア
9.6.2 アラブ首長国連邦
9.6.3 カタール
9.6.4 南アフリカ
9.6.5 その他の中東・アフリカ地域
10 主要開発
10.1 契約、パートナーシップ、提携、合弁事業
10.2 買収と合併
10.3 新製品上市
10.4 事業拡大
10.5 その他の主要戦略
11 企業プロファイリング
Alkor Technologies
Alpha Spectra Inc
Berkeley Nucleonics Corporation
Detec
Dynasil Corporation
Electro-Optics Technology Co Ltd
Epic Crystals Co Ltd
Hamamatsu Photonics K.K.
Hellma Gmbh & Co.KG
Hitachi Ltd
Nihon Kessho Kogaku Co Ltd
Omega Piezo Technologies
Rexon Components, Inc.
Saint-Gobain
Scintacor
Shanghai SICCAS High Technology Coporation
Thermo Fisher Scientific Inc and Toshiba Materials Co Ltd.

表一覧
表1 無機シンチレータの世界市場展望、地域別(2022-2030年) ($MN)
表2 無機シンチレータの世界市場展望、タイプ別 (2022-2030) ($MN)
表3 無機シンチレータの世界市場展望:アルカリハライド別 (2022-2030) ($MN)
表4 無機シンチレータの世界市場展望:酸化物化合物別 (2022-2030) ($MN)
表5 無機シンチレータの世界市場展望、希土類金属別 (2022-2030) ($MN)
表6 無機シンチレータの世界市場展望、その他のタイプ別 (2022-2030) ($MN)
表7 無機シンチレータの世界市場展望、材料別 (2022-2030) ($MN)
表8 無機シンチレータの世界市場展望:ヨウ化セシウム別 (2022-2030) ($MN)
表9 無機シンチレータの世界市場展望、ヨウ化ナトリウム別 (2022-2030) ($MN)
表10 無機シンチレータの世界市場展望、ゲルマニウム酸ビスマス別 (2022-2030) ($MN)
表11 無機シンチレータの世界市場展望、臭化ランタン(LaBr3)別 (2022-2030) ($MN)
表12 無機シンチレータの世界市場展望、セリウムドープオキシケイ酸ルテチウム(LSO:Ce)別 (2022-2030) ($MN)
表13 無機シンチレータの世界市場展望:フッ化バリウム(BaF2)別 (2022-2030) ($MN)
表14 無機シンチレータの世界市場展望、臭化セリウム(CeBr3)別 (2022-2030) ($MN)
表15 無機シンチレータの世界市場展望、オルトケイ酸ガドリニウム(GSO)別 (2022-2030) ($MN)
表16 無機シンチレータの世界市場展望、その他の材料別 (2022-2030) ($MN)
表17 無機シンチレータの世界市場展望:用途別 (2022-2030) ($MN)
表18 無機シンチレータの世界市場展望:医療イメージング別 (2022-2030) ($MN)
表19 無機シンチレータの世界市場展望:国土安全保障・防衛別 (2022-2030) ($MN)
表20 無機シンチレータの世界市場展望:原子力発電所別 (2022-2030) ($MN)
表21 無機シンチレータの世界市場展望、放射線防護別 (2022-2030) ($MN)
表22 無機シンチレータの世界市場展望、石油探査別 (2022-2030) ($MN)
表23 無機シンチレータの世界市場展望:その他の用途別 (2022-2030) ($MN)
表24 無機シンチレータの世界市場展望:エンドユーザー別 (2022-2030) ($MN)
表25 無機シンチレータの世界市場展望:ヘルスケア別 (2022-2030) ($MN)
表26 無機シンチレータの世界市場展望:エネルギー分野別 (2022-2030) ($MN)
表27 無機シンチレータの世界市場展望:産業別 (2022-2030) ($MN)
表28 無機シンチレータの世界市場展望:その他のエンドユーザー別 (2022-2030) ($MN)
注)北米、ヨーロッパ、APAC、南米、中東・アフリカ地域の表も上記と同様に表記しています。

According to Stratistics MRC, the Global Inorganic Scintillators Market is accounted for $561.1 million in 2024 and is expected to reach $961.9 million by 2030 growing at a CAGR of 9.4% during the forecast period. Materials known as inorganic scintillators are elements which release light when they come into contact with ionizing radiation, which includes particles, gamma rays, and X-rays. Usually, inorganic crystals like bismuth germanate, cesium iodide, or sodium iodide is used to make them. These crystals react to radiation by excit electrons, which release ultraviolet or visible light.

Market Dynamics:

Driver:

Growing demand for radiation detection in healthcare

Effective radiation detection is driving up demand for inorganic scintillators in healthcare applications, especially in positron emission tomography and single-photon emission computed tomography. These substances play a critical role in diagnostic imaging systems by converting high-energy radiation into visible light. Technological developments in scintillator technology enhance performance, sensitivity, and robustness, promoting broader medical application usage and propelling market expansion.

Restraint:

Competition from organic scintillators

Because they are more affordable and simpler to produce, organic scintillators are becoming more and more popular, which could eventually cause inorganic alternatives to lose market share. Stricter environmental laws governing the use of hazardous elements in inorganic scintillators have also had an impact on this change. These laws could limit the market for inorganic goods and raise compliance expenses. Customers might like organic materials because they are less expensive.

Opportunity:

Increased use in national security and defense

Inorganic scintillators are becoming more and more in demand due to growing threats to global security and the need for efficient radiation detection systems in defense applications. These scintillators are vital for ionizing radiation detection and measurement, which makes them indispensable for homeland security applications such as border protection and nuclear threat detection. Advanced radiation detection systems see an increase in investment as a result of increased government funding on defense technologies.

Threat:

Limited availability of raw materials

Rare-earth elements like lutetium, yttrium, and bismuth, which are costly and challenging to get, are frequently used in inorganic scintillators. Profit margins are lowered and production expenses rise as a result. Supply chain instability can result in delays in scintillator manufacturing and delivery. Examples of such interruptions include geopolitical tensions, trade restrictions, and environmental laws in important locations like China.

Covid-19 Impact:

The COVID-19 pandemic significantly impacted the Inorganic Scintillators Market, causing disruptions in production and supply chains. Lockdowns led to temporary closures of manufacturing facilities, resulting in delays for key projects and a slowdown in market growth. Moreover the pandemic generated personnel constraints in manufacturing plants due to social distancing measures and health concerns, hindered production processes and efficiency. Market instability and demand changes in several areas, including medical imaging, led to greater demand but falls, affecting inventory management.

The alkali halides segment is expected to be the largest during the forecast period

During the forecast period, the alkali halides segment is anticipated to register the largest market share because alkali halide research is broadening the range of applications for these materials and improving their performance attributes, such as decay time and light yield. Environmental factors, such as the need to comply with the Restriction of Hazardous Substances (RoHS) regulations, can have an impact on material selection and production methods. This can force manufacturers to choose safer substitutes while still meeting performance requirements.

The medical imaging segment is expected to have the highest CAGR during the forecast period

During the projection period, the medical imaging segment is expected to grow at the highest CAGR owing to early and precise diagnosis is necessary due to the rising number of chronic diseases and cancer diagnoses, there is a growing demand for sophisticated imaging equipment. These systems require inorganic scintillators such as sodium and cesium iodide, which increases the market for scintillator materials. Improvements in medical imaging technology, such as resolution, sensitivity, and speed, require more effective and high-performing inorganic scintillators, which is fueling the market's expansion.

Region with largest share:

The North America region is projected to account for the largest market share during the forecast period because chronic diseases are becoming more common and early diagnosis is essential, inorganic scintillators are essential to medical imaging technologies such as PET and CT scanners. The US's focus on national security and nuclear threat detection has led to increasing investment in radiation detection systems, relying mainly on inorganic scintillators for accurate and efficient performance.

Region with highest CAGR:

The Asia Pacific region is predicted to witness the lucrative growth rate throughout the forecast period owing to investments in healthcare infrastructure by China, Japan, India, and South Korea are driving up demand for medical imaging technologies such as PET and CT scanners. For these devices, inorganic scintillators are essential, which propels market expansion. As a result of the Asia Pacific region's growing reliance on nuclear energy, inorganic scintillators are needed for radiation monitoring and detection, especially in China and India.

Key players in the market

Some of the key players in Inorganic Scintillators Market include Alkor Technologies, Alpha Spectra Inc, Berkeley Nucleonics Corporation, Detec, Dynasil Corporation, Electro-Optics Technology Co Ltd, Epic Crystals Co Ltd, Hamamatsu Photonics K.K., Hellma Gmbh & Co.KG, Hitachi Ltd, Nihon Kessho Kogaku Co Ltd, Omega Piezo Technologies, Rexon Components, Inc., Saint-Gobain, Scintacor , Shanghai SICCAS High Technology Coporation, Thermo Fisher Scientific Inc and Toshiba Materials Co Ltd.

Key Developments:

In October 2024, Thermo Fisher Scientific Inc., introduced more sustainable packaging for 125,000 of its Invitrogen™ antibodies. Through functional and stability testing, Thermo Fisher has demonstrated that a significant portion of its Invitrogen antibody portfolio can be maintained at ambient temperature conditions during transport.

In October 2024, Thermo Fisher Scientific Inc. launched the Thermo Scientific™ iCAP™ MX Series ICP-MS to simplify trace element analysis with inductively coupled plasma mass spectrometry (ICP-MS). The launch includes a new single quadrupole Thermo Scientific iCAP MSX ICP-MS and triple quadrupole.

In September 2024, Hitachi completed acquisition of MA micro automation of Germany, a leading provider of robotic and automation technology. Both JR Automation and MA micro automation have strong, recognized brands and will continue to do business under their existing names.

Types Covered:
• Alkali Halides
• Oxide Compounds
• Rare Earth Metals
• Other Types

Materials Covered:
• Cesium Iodide
• Sodium Iodide
• Bismuth Germanate Oxide
• Lanthanum Bromide (LaBr3)
• Cerium-doped Lutetium Oxyorthosilicate (LSO:Ce)
• Barium Fluoride (BaF2)
• Cerium Bromide (CeBr3)
• Gadolinium Orthosilicate (GSO)
• Other Materials

Applications Covered:
• Medical Imaging
• Homeland Security & Defense
• Nuclear Power Plants
• Radioprotection
• Oil Exploration
• Other Applications

End Users Covered:
• Healthcare
• Energy Sector
• Industrial
• Other End Users

Regions Covered:
• North America
US
Canada
Mexico
• Europe
Germany
UK
Italy
France
Spain
Rest of Europe
• Asia Pacific
Japan
China
India
Australia
New Zealand
South Korea
Rest of Asia Pacific
• South America
Argentina
Brazil
Chile
Rest of South America
• Middle East & Africa
Saudi Arabia
UAE
Qatar
South Africa
Rest of Middle East & Africa

What our report offers:
- Market share assessments for the regional and country-level segments
- Strategic recommendations for the new entrants
- Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
- Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
- Strategic recommendations in key business segments based on the market estimations
- Competitive landscaping mapping the key common trends
- Company profiling with detailed strategies, financials, and recent developments
- Supply chain trends mapping the latest technological advancements

1 Executive Summary
2 Preface
2.1 Abstract
2.2 Stake Holders
2.3 Research Scope
2.4 Research Methodology
2.4.1 Data Mining
2.4.2 Data Analysis
2.4.3 Data Validation
2.4.4 Research Approach
2.5 Research Sources
2.5.1 Primary Research Sources
2.5.2 Secondary Research Sources
2.5.3 Assumptions
3 Market Trend Analysis
3.1 Introduction
3.2 Drivers
3.3 Restraints
3.4 Opportunities
3.5 Threats
3.6 Application Analysis
3.7 End User Analysis
3.8 Emerging Markets
3.9 Impact of Covid-19
4 Porters Five Force Analysis
4.1 Bargaining power of suppliers
4.2 Bargaining power of buyers
4.3 Threat of substitutes
4.4 Threat of new entrants
4.5 Competitive rivalry
5 Global Inorganic Scintillators Market, By Type
5.1 Introduction
5.2 Alkali Halides
5.3 Oxide Compounds
5.4 Rare Earth Metals
5.5 Other Types
6 Global Inorganic Scintillators Market, By Material
6.1 Introduction
6.2 Cesium Iodide
6.3 Sodium Iodide
6.4 Bismuth Germanate Oxide
6.5 Lanthanum Bromide (LaBr3)
6.6 Cerium-doped Lutetium Oxyorthosilicate (LSO:Ce)
6.7 Barium Fluoride (BaF2)
6.8 Cerium Bromide (CeBr3)
6.9 Gadolinium Orthosilicate (GSO)
6.10 Other Materials
7 Global Inorganic Scintillators Market, By Application
7.1 Introduction
7.2 Medical Imaging
7.3 Homeland Security & Defense
7.4 Nuclear Power Plants
7.5 Radioprotection
7.6 Oil Exploration
7.7 Other Applications
8 Global Inorganic Scintillators Market, By End User
8.1 Introduction
8.2 Healthcare
8.3 Energy Sector
8.4 Industrial
8.5 Other End Users
9 Global Inorganic Scintillators Market, By Geography
9.1 Introduction
9.2 North America
9.2.1 US
9.2.2 Canada
9.2.3 Mexico
9.3 Europe
9.3.1 Germany
9.3.2 UK
9.3.3 Italy
9.3.4 France
9.3.5 Spain
9.3.6 Rest of Europe
9.4 Asia Pacific
9.4.1 Japan
9.4.2 China
9.4.3 India
9.4.4 Australia
9.4.5 New Zealand
9.4.6 South Korea
9.4.7 Rest of Asia Pacific
9.5 South America
9.5.1 Argentina
9.5.2 Brazil
9.5.3 Chile
9.5.4 Rest of South America
9.6 Middle East & Africa
9.6.1 Saudi Arabia
9.6.2 UAE
9.6.3 Qatar
9.6.4 South Africa
9.6.5 Rest of Middle East & Africa
10 Key Developments
10.1 Agreements, Partnerships, Collaborations and Joint Ventures
10.2 Acquisitions & Mergers
10.3 New Product Launch
10.4 Expansions
10.5 Other Key Strategies
11 Company Profiling
11.1 Alkor Technologies
11.2 Alpha Spectra Inc
11.3 Berkeley Nucleonics Corporation
11.4 Detec
11.5 Dynasil Corporation
11.6 Electro-Optics Technology Co Ltd
11.7 Epic Crystals Co Ltd
11.8 Hamamatsu Photonics K.K.
11.9 Hellma Gmbh & Co.KG
11.10 Hitachi Ltd
11.11 Nihon Kessho Kogaku Co Ltd
11.12 Omega Piezo Technologies
11.13 Rexon Components, Inc.
11.14 Saint-Gobain
11.15 Scintacor
11.16 Shanghai SICCAS High Technology Coporation
11.17 Thermo Fisher Scientific Inc
11.18 Toshiba Materials Co Ltd
List of Tables
Table 1 Global Inorganic Scintillators Market Outlook, By Region (2022-2030) ($MN)
Table 2 Global Inorganic Scintillators Market Outlook, By Type (2022-2030) ($MN)
Table 3 Global Inorganic Scintillators Market Outlook, By Alkali Halides (2022-2030) ($MN)
Table 4 Global Inorganic Scintillators Market Outlook, By Oxide Compounds (2022-2030) ($MN)
Table 5 Global Inorganic Scintillators Market Outlook, By Rare Earth Metals (2022-2030) ($MN)
Table 6 Global Inorganic Scintillators Market Outlook, By Other Types (2022-2030) ($MN)
Table 7 Global Inorganic Scintillators Market Outlook, By Material (2022-2030) ($MN)
Table 8 Global Inorganic Scintillators Market Outlook, By Cesium Iodide (2022-2030) ($MN)
Table 9 Global Inorganic Scintillators Market Outlook, By Sodium Iodide (2022-2030) ($MN)
Table 10 Global Inorganic Scintillators Market Outlook, By Bismuth Germanate Oxide (2022-2030) ($MN)
Table 11 Global Inorganic Scintillators Market Outlook, By Lanthanum Bromide (LaBr3) (2022-2030) ($MN)
Table 12 Global Ino rganic Scintillators Market Outlook, By Cerium-doped Lutetium Oxyorthosilicate (LSO:Ce) (2022-2030) ($MN)
Table 13 Global Inorganic Scintillators Market Outlook, By Barium Fluoride (BaF2) (2022-2030) ($MN)
Table 14 Global Inorganic Scintillators Market Outlook, By Cerium Bromide (CeBr3) (2022-2030) ($MN)
Table 15 Global Inorganic Scintillators Market Outlook, By Gadolinium Orthosilicate (GSO) (2022-2030) ($MN)
Table 16 Global Inorganic Scintillators Market Outlook, By Other Materials (2022-2030) ($MN)
Table 17 Global Inorganic Scintillators Market Outlook, By Application (2022-2030) ($MN)
Table 18 Global Inorganic Scintillators Market Outlook, By Medical Imaging (2022-2030) ($MN)
Table 19 Global Inorganic Scintillators Market Outlook, By Homeland Security & Defense (2022-2030) ($MN)
Table 20 Global Inorganic Scintillators Market Outlook, By Nuclear Power Plants (2022-2030) ($MN)
Table 21 Global Inorganic Scintillators Market Outlook, By Radioprotection (2022-2030) ($MN)
Table 22 Global Inorganic Scintillators Market Outlook, By Oil Exploration (2022-2030) ($MN)
Table 23 Global Inorganic Scintillators Market Outlook, By Other Applications (2022-2030) ($MN)
Table 24 Global Inorganic Scintillators Market Outlook, By End User (2022-2030) ($MN)
Table 25 Global Inorganic Scintillators Market Outlook, By Healthcare (2022-2030) ($MN)
Table 26 Global Inorganic Scintillators Market Outlook, By Energy Sector (2022-2030) ($MN)
Table 27 Global Inorganic Scintillators Market Outlook, By Industrial (2022-2030) ($MN)
Table 28 Global Inorganic Scintillators Market Outlook, By Other End Users (2022-2030) ($MN)
Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.

★調査レポート[世界の無機シンチレータ市場(~2030年):種類別(ハロゲン化アルカリ、酸化物化合物、希土類金属、その他)、材料別、用途別、エンドユーザー別、地域別] (コード:SMRC24NOV398)販売に関する免責事項を必ずご確認ください。
★調査レポート[世界の無機シンチレータ市場(~2030年):種類別(ハロゲン化アルカリ、酸化物化合物、希土類金属、その他)、材料別、用途別、エンドユーザー別、地域別]についてメールでお問い合わせ


◆H&Iグローバルリサーチのお客様(例)◆