1 はじめに 23
1.1 調査目的 23
1.2 市場の定義 23
1.3 調査範囲 24
1.3.1 対象市場と地域範囲 24
1.3.2 対象範囲と除外範囲 25
1.3.3 考慮した年数 25
1.4 考慮した通貨 26
1.5 単位
1.6 利害関係者 26
1.7 変更点のまとめ 27
2 調査方法 28
2.1 調査データ 28
2.1.1 二次データ 29
2.1.1.1 主要な二次情報源のリスト 29
2.1.1.2 二次資料からの主要データ 29
2.1.2 一次データ 30
2.1.2.1 一次インタビュー参加者リスト 30
2.1.2.2 プライマリーの内訳 30
2.1.2.3 一次資料からの主要データ 31
2.1.2.4 主要な業界インサイト 32
2.1.3 二次調査および一次調査 32
2.2 市場規模の推定方法 33
2.2.1 ボトムアップアプローチ 34
2.2.1.1 ボトムアップ分析を用いた市場規模算出のアプローチ
(需要側) 34
2.2.2 トップダウンアプローチ 35
2.2.2.1 トップダウン分析による市場規模推計の考え方(供給側
(供給側) 35
2.3 市場の内訳とデータの三角測量 36
2.4 リサーチの前提 37
2.5 リスク分析 38
2.6 調査の限界 38
3 エグゼクティブ・サマリー 39
4 プレミアムインサイト 43
4.1 分散型光ファイバーセンサー(DFOS)市場におけるプレーヤーの魅力的な機会
市場
4.2 分散型光ファイバーセンサー(DFOS)市場、ファイバータイプ別 43
4.3 分散型光ファイバーセンサー(DFOS)市場:散乱方式別 44
4.4 分散型光ファイバーセンサー(DFOS)市場:動作原理別 44
4.5 北米の分散型光ファイバーセンサー(DFOS)市場:ファイバータイプ別、国別 45
ファイバータイプ別、国別 45
4.6 分散型光ファイバーセンサー(DFOS)市場:国別 45
5 市場の概要 46
5.1 はじめに 46
5.2 市場ダイナミクス 46
5.2.1 推進要因 47
5.2.1.1 石油・ガス分野における急速なデジタル化と自動化 47
5.2.1.2 効率的な構造ヘルスモニタリングの重視の高まり 47
5.2.1.3 坑井監視を改善するセンサーの技術革新の増加 47
5.2.1.4 スマートシティの台頭とモノのインターネットの採用 48
5.2.2 阻害要因 49
5.2.2.1 分散型センサーの設置に伴う技術的問題 49
5.2.2.2 高い初期投資 49
5.2.3 機会 50
5.2.3.1 データ主導の意思決定重視の高まり 50
5.2.3.2 海洋掘削と石油・ガス探査の増加 50
50 5.2.3.3 排出量削減のための厳しい規制の高まり 50
5.2.4 課題 51
5.2.4.1 分散型センサー技術のコスト高 51
5.3 バリューチェーン分析 52
5.4 エコシステム分析 54
5.5 顧客ビジネスに影響を与えるトレンド/混乱 55
5.6 技術分析 56
5.6.1 主要技術 56
5.6.1.1 準分散センシング 56
5.6.1.2 分散センシング 56
5.6.1.3 干渉計 57
5.6.2 補完技術
5.6.2.1 モノのインターネット 57
5.6.3 隣接技術 57
5.6.3.1 ワイヤレスセンサーネットワーク 57
5.7 投資と資金調達のシナリオ 58
5.8 ポーターのファイブフォース分析 58
5.8.1 競合の激しさ 60
5.8.2 サプライヤーの交渉力 60
5.8.3 買い手の交渉力 60
5.8.4 代替品の脅威 60
5.8.5 新規参入の脅威 60
5.9 主要ステークホルダーと購買基準 61
5.9.1 購入プロセスにおける主要ステークホルダー 61
5.9.2 購入基準 62
5.10 ケーススタディ分析 63
5.10.1 APセンシングは欧州で電力ケーブル障害検出用の分散型音響センシングソリューションを提供 63
5.10.2 ドイツ鉄道がケーブル盗難防止に AP センシングの N52 シリーズ分散型音響センシングユニットを採用 63
5.10.3 カタール公共事業庁がモニタリング目的で AP センシングのリニア熱検知装置を導入 64
熱検知装置を設置 64
5.10.4 S L B がカナダで蒸気氾濫の運転温度を監視するためにウェルウォッチャ ー社の分散型温度検知ファイバーBriteblue HTを導入 64
5.10.5 スラブ、ボアホール地震調査用に高精細垂直地震ダスシステムを導入 64
ベルギーのボアホール地震調査用に導入 65
5.11 貿易分析 65
5.11.1 輸入シナリオ(HS コード 9001) 65
5.11.2 輸出シナリオ(HS コード 9001) 67
5.12 特許分析 68
5.13 主要会議とイベント(2024-2025年) 71
5.14 関税と規制の状況 72
5.14.1 関税分析(HSコード9001) 72
5.14.2 規制機関、政府機関、その他の組織 74
5.14.3 規制 76
5.15 分散型光ファイバーセンサー(DFOS)市場におけるGEN AI/AIの影響 77
5.16 価格分析 78
5.16.1 分散型光ファイバーセンサー(DFOS)の用途別平均販売価格動向(2020~2023 年) 79
アプリケーション別、2020~2023年 79
5.16.2 分散型光ファイバーセンサー(DFOS)の地域別平均販売価格動向(2020~2023 年) 79
地域別、2020年~2023年
6 分散型光ファイバーセンサー(DFOS)市場、ファイバータイプ別 81
6.1 はじめに 82
6.2 シングルモード 83
6.2.1 高速長距離データ伝送需要の高まりがセグメント成長を促進 83
6.3 マルチモード 84
6.3.1 短距離、高密度環境での使用の増加がセグメント成長を加速 84
7 分散型光ファイバーセンサー(DFOS)市場、動作原理別 86
7.1 導入
7.2 光時間領域反射率法 88
7.2.1 通信、データセンター、その他の産業における光ファイバーネットワークの採用が市場を牽引 88
7.3 光周波数領域リフレクトメトリ 89
7.3.1 水文地質学的プロセスを詳細に調べる必要性の高まりがセグメント成長を後押し 89
8 分散型光ファイバーセンサー(DFOS)市場、散乱方式別 91
8.1 はじめに 92
8.2 ラマン散乱法 94
8.2.1 石油・ガスおよびその他の産業におけるリアルタイム温度モニタリングの需要の高まりが
ガス産業などにおけるリアルタイム温度モニタリング需要の高まりがセグメント成長を促進 94
8.3 レイリー散乱&ファイバーブラッググレーティング法 94
8.3.1 精密な長距離インフラモニタリングのニーズの高まりがセグメント成長を促進 94
8.4 ブリルアン散乱法 95
8.4.1 構造健全性アプリケーションにおけるデュアルパラメータモニタリングへの注目の高まりが市 場を牽引 95
9 分散型光ファイバーセンサー(DFOS)市場、用途別 96
9.1 導入 97
9.2 温度センシング 98
9.2.1 高精度、長距離、高信頼性のモニタリング技術に対する需要の高まりが市場を牽引 98
9.3 音響センシング 100
9.3.1 パイプラインシステムの監視・モニタリングへの関心の高まりがセグメント成長を促進 100
9.4 ひずみセンシング 102
9.4.1 スマートインフラストラクチャとiot駆動型システムの採用が増加し、分野別成長に寄与 102
10 分散型光ファイバーセンサー(DFOS)市場(垂直方向別) 104
10.1 導入 105
10.2 石油・ガス 106
10.2.1 パイプラインシステムの監視と制御を目的とした分散型音響センサーシステムの導入が増加。
が市場を牽引 106
10.3 電力・公益事業 108
10.3.1 全ファイバーネットワークの急速な拡大がセグメント成長に寄与 108
10.4 安全性とセキュリティ 110
10.4.1 重要インフラをリアルタイムで継続的に監視する必要性の高まりが成長を促進 110
10.5 産業用 111
10.5.1 自動化ソリューションへの iot やその他の先進技術の統合が増加し、セグメント成長を促進 111
10.6 インフラストラクチャー 113
10.6.1 光ファイバーセンサーを利用した遺産建造物の監視が増加し、セグメント成長を促進 113
10.7 通信分野 115
10.7.1 高速データ伝送と帯域幅に対する需要の高まりがセグメント成長に寄与 115
11 分散型光ファイバーセンサー(DFOS)市場:地域別 117
11.1 はじめに 118
11.2 北米 119
11.2.1 北米のマクロ経済見通し 120
11.2.2 米国 124
11.2.2.1 石油と関連製品の生産増加が市場成長に寄与 124
市場成長に寄与 124
11.2.3 カナダ 125
11.2.3.1 防火・安全対策重視の高まりが市場成長を加速 125
市場の成長を加速 125
11.2.4 メキシコ 126
11.2.4.1 石油・ガス分野における危険事故防止への関心の高まりが市場成長を促進 126
セクターにおける危険事故防止への関心の高まりが市場成長を促進 126
11.3 欧州 127
11.3.1 欧州のマクロ経済見通し 127
11.3.2 ロシア 132
11.3.2.1 エネルギー・防衛分野への投資増加が市場を牽引 132
11.3.3 スカンジナビア 133
11.3.3.1 スカンジナビア諸国における再生可能エネルギーの普及拡大が市場成長を促進 133
11.3.4 イギリス 134
11.3.4.1 構造ヘルスモニタリングソリューションの需要急増が市場成長を促進 134
11.3.5 ドイツ 134
11.3.5.1 急速なインフラ整備が市場成長に寄与 134
11.3.6 その他のヨーロッパ 135
11.4 アジア太平洋地域 136
11.4.1 アジア太平洋地域のマクロ経済見通し 136
11.4.2 中国 141
11.4.2.1 エネルギー需要への対応の高まりが市場成長に寄与 141
市場成長に寄与 141
11.4.3 日本 142
11.4.3.1 液化天然ガス輸出の増加が市場成長を促進 142
11.4.4 インドネシア 143
11.4.4.1 進行中の石油・ガス探査活動が市場成長を後押し 143
11.4.5 インド 143
11.4.5.1 送電網の急速な拡大が市場成長を促進 143
市場成長を促進 143
11.4.6 その他のアジア太平洋地域 144
11.5 中東 145
11.5.1 中東のマクロ経済見通し 145
11.5.2 サウジアラビア 148
11.5.2.1 石油・ガス生産プロジェクトの増加が市場成長を後押し 148
11.5.3 イラク 149
11.5.3.1 インフラ近代化への関心の高まりが市場成長を促進 149
市場成長を促進 149
11.5.4 イラン 150
11.5.4.1 石油・ガス生産に関する政府のイニシアティブの高まりが市場成長を促進 150
市場成長を促進 150
11.5.5 その他の中東地域 151
11.6 ROW 152
11.6.1 行のマクロ経済見通し 152
11.6.2 アフリカ 155
11.6.2.1 産業部門強化に向けた政府の取り組みが増加し
市場を牽引 155
11.6.3 南・中央アメリカ 156
11.6.3.1 ブラジル 158
11.6.3.1.1 インフラへの高い政府支出が市場成長を加速 158
11.6.3.2 アルゼンチン 159
11.6.3.2.1 産業分野と安全・セキュリティ分野の繁栄が市場成長を促進 159
市場成長を促進 159
11.6.3.3 ベネズエラ 160
11.6.3.3.1 石油・ガス生産の増加とインフラ近代化が市場成長を促進 160
11.6.3.4 その他の中南米地域 160
12 競争環境 161
12.1 概要 161
12.2 主要プレーヤーの戦略/勝利への権利(2021~2024年) 161
12.3 収益分析、2019-2023 164
12.4 市場シェア分析、2023年 164
12.5 企業評価と財務指標(2024年) 167
12.6 ブランド比較 168
12.7 企業評価マトリックス:主要企業、2023年 168
12.7.1 スター企業 168
12.7.2 新興リーダー 168
12.7.3 浸透型プレーヤー 169
12.7.4 参加企業 169
12.7.5 企業フットプリント:主要プレーヤー、2023年 170
12.7.5.1 企業フットプリント 170
12.7.5.2 地域別フットプリント 170
12.7.5.3 アプリケーションのフットプリント 171
12.7.5.4 垂直フットプリント 171
12.8 企業評価マトリクス:新興企業/SM(2023年) 172
12.8.1 進歩的企業 172
12.8.2 対応力のある企業 172
12.8.3 ダイナミックな企業 172
12.8.4 スタートアップ・ブロック 172
12.8.5 競争ベンチマーキング:新興企業/SM(2023年) 174
12.8.5.1 主要新興企業/中小企業の詳細リスト 174
12.8.5.2 主要新興企業/中小企業の競合ベンチマーキング 174
12.9 競争シナリオ 175
12.9.1 製品上市 175
12.9.2 取引 177
13 企業プロファイル 181
13.1 主要企業 181
SLB(米国)
Halliburton(米国)
横河電機(日本)
Weatherford(米国)
Luna Innovations Incorporated(米国)
Omnisens(スイス)
OFS Fitel LLC(米国)
Bandweaver(英国)
AP Sensing(ドイツ)
DarkPulse Inc(米国)
14 付録 225
14.1 業界専門家による洞察 225
14.2 ディスカッションガイド 226
14.3 Knowledgestore: Marketsandmarketsの購読ポータル 230
14.4 カスタマイズオプション 232
14.5 関連レポート 232
14.6 著者の詳細 233
The oil and gas industry is undergoing fast automation and digitization, where highly advanced monitoring technologies are needed to ensure high safety and efficiency during operation. This may lead to a significant growth in the distributed fiber optic sensors (DFOS) market. The need to impose effective structural health monitoring in buildings, bridges, and tunnels, among others, around the world is also fueling the use of DFOS systems, offering real-time, accurate, and distributed sensing capabilities.
“Market for optical time domain reflectometry to hold larger market share during the forecast period.”
The optical time domain reflectometry (OTDR) held a larger share in the market of the distributed fiber optic sensor due to its established reputation in terms of reliability and accuracy in testing and monitoring the fiber optic across various industries, most notably telecommunications, oil & gas, and infrastructure. Its ability to detect faults over long distances, often with minimal signal loss, highly values it for large-scale applications where precision is essential.
“Rayleigh scattering and Bragg grating method segment to grow at the highest CAGR for distributed fiber optic sensor market.”
Rayleigh scattering and Bragg grating method method is expected to grow at the highest CAGR in the distributed fiber optic sensor market. The key factor behind this growth being its capability to measure nearly all physical parameters such as strain and temperature, which drives its value. By leveraging the light scattering principle, it can detect and highlight propagating effects, enabling precise sensing of physical changes. Rayleigh-based sensors are often employed in distributed acoustic sensing systems that are created to monitor vibrations and acoustic waves. Additionally, Fiber Bragg sensors are highly versatile and can perform well in high temperature applications and provide very accurate strain measurements. They offer several advantages, including low loss, immunity to electromagnetic interference, and the capability to multiplex multiple gratings along a single fiber, enabling multi-point sensing.
“North America is expected to hold significant share during the forecast timeline.”
North America is expected to dominate in terms of market share in the distributed fiber optic sensor market during the forecast period. The strong oil and gas industry in the region continues to create significant growth and advancements for the distributed fiber optic sensor technology. According to the US Department of Transportation, the US has the largest oil & gas pipeline network in the world, with more than 2 million km of pipelines. As North America has an extensive network of pipelines transporting oil all across the regions, DFOS systems are widely used for pipeline integrity maintenance, leakage detection, flow assurance provision, and other monitoring functions. Growth in shale gas exploration will further intensify the oil & gas industry, and this should have a positive impact on the market.
Extensive primary interviews were conducted with key industry experts in the distributed fiber optic sensor market space to determine and verify the market size for various segments and subsegments gathered through secondary research.
The break-up of primary participants for the report has been shown below:
The break-up of the profile of primary participants in the distributed fiber optic sensor market:
• By Company Type: Tier 1 – 25%, Tier 2 – 35%, and Tier 3 – 40%
• By Designation: C-Level Executives – 30%, Directors – 40%, Others - 30%
• By Region: North America – 35%, Europe – 30%, Asia Pacific – 25%, ROW- 10%
The report profiles key players in the distributed fiber optic sensor market. Prominent players profiled in this report are SLB (US), Halliburton (US), Yokogawa Electric Corporation (Japan), Weatherford (US), Luna Innovations Incorporated (US), Omnisens (Switzerland), OFS Fitel, LLC (US), Bandweaver (UK), AP Sensing (Germany), and DarkPulse Inc (US), among others.
Apart from this, AFL (US), Aragon Photonics (Spain), Corning Incorporated (US), FOTECH (UK), Hifi Engineering Inc. (Canada), Hawk Measurement Systems (Australia), NKT Photonics A/S (Denmark), Optromix, Inc. (US), OZ Optics Ltd. (Canada), Sensornet (UK), SENSURON (US), Com & Sens (Belgium), Solifos (Switzerland), VIAVI Solutions Inc. (US), Ziebel (US), are among a few emerging companies in the distributed fiber optic sensor market.
Research Coverage: This research report categorizes the distributed fiber optic sensor market based on fiber type (single-mode, multi-mode), operating principle, (optical time domain reflectometry, optical frequency domain reflectometry), application (temperature sensing, acoustic sensing, strain sensing), scattering method (Raman scattering method, Rayleigh scattering & Bragg grating method, Brillouin scattering method), vertical (oil & gas, power & utility, safety & security, industrial, infrastructure, telecommunications, others), and region (North America, Middle East, Europe, Asia Pacific, RoW). The report describes the major drivers, restraints, challenges, and opportunities pertaining to the distributed fiber optic sensor market and forecasts the same till 2030. Apart from these, the report also consists of leadership mapping and analysis of all the companies included in the distributed fiber optic sensor ecosystem.
Key Benefits of Buying the Report The report will help the market leaders/new entrants in this market with information on the closest approximations of the revenue numbers for the overall distributed fiber optic sensor market and the subsegments. This report will help stakeholders understand the competitive landscape and gain more insights to position their businesses better and plan suitable go-to-market strategies. The report also helps stakeholders understand the pulse of the market and provides them with information on key market drivers, restraints, challenges, and opportunities.
The report provides insights on the following pointers:
• Analysis of key drivers (rapid digitalization and automation in oil & gas sector, rising emphasis on efficient structural health monitoring, and rise in smart cities and adoption of Internet of Things), restraints (technical issues associated with installing distributed sensors), opportunities (stringent statutory regulations regarding leak detection, growing emphasis on data-driven decision-making, rising implementation of stringent regulations to reduce emissions), and challenges (High costs of distributed sensor technologies) influencing the growth of the distributed fiber optic sensor market.
• Product Development/Innovation: Detailed insights on upcoming technologies, research & development activities, and new product & service launches in the distributed fiber optic sensor market.
• Market Development: Comprehensive information about lucrative markets – the report analysis the distributed fiber optic sensor market across varied regions
• Market Diversification: Exhaustive information about new products & services, untapped geographies, recent developments, and investments in the distributed fiber optic sensor market
• Competitive Assessment: In-depth assessment of market shares, growth strategies, and service offerings of leading players like SLB (US), Halliburton (US), Yokogawa Electric Corporation (Japan), Weatherford (US), Luna Innovations Incorporated (US), among others in the distributed fiber optic sensor market.
1 INTRODUCTION 23
1.1 STUDY OBJECTIVES 23
1.2 MARKET DEFINITION 23
1.3 STUDY SCOPE 24
1.3.1 MARKETS COVERED AND REGIONAL SCOPE 24
1.3.2 INCLUSIONS AND EXCLUSIONS 25
1.3.3 YEARS CONSIDERED 25
1.4 CURRENCY CONSIDERED 26
1.5 UNITS CONSIDERED 26
1.6 STAKEHOLDERS 26
1.7 SUMMARY OF CHANGES 27
2 RESEARCH METHODOLOGY 28
2.1 RESEARCH DATA 28
2.1.1 SECONDARY DATA 29
2.1.1.1 List of key secondary sources 29
2.1.1.2 Key data from secondary sources 29
2.1.2 PRIMARY DATA 30
2.1.2.1 List of primary interview participants 30
2.1.2.2 Breakdown of primaries 30
2.1.2.3 Key data from primary sources 31
2.1.2.4 Key industry insights 32
2.1.3 SECONDARY AND PRIMARY RESEARCH 32
2.2 MARKET SIZE ESTIMATION METHODOLOGY 33
2.2.1 BOTTOM-UP APPROACH 34
2.2.1.1 Approach to arrive at market size using bottom-up analysis
(demand side) 34
2.2.2 TOP-DOWN APPROACH 35
2.2.2.1 Approach to arrive at market size using top-down analysis
(supply side) 35
2.3 MARKET BREAKDOWN AND DATA TRIANGULATION 36
2.4 RESEARCH ASSUMPTIONS 37
2.5 RISK ANALYSIS 38
2.6 RESEARCH LIMITATIONS 38
3 EXECUTIVE SUMMARY 39
4 PREMIUM INSIGHTS 43
4.1 ATTRACTIVE OPPORTUNITIES FOR PLAYERS IN DISTRIBUTED FIBER OPTIC
SENSOR MARKET 43
4.2 DISTRIBUTED FIBER OPTIC SENSOR MARKET, BY FIBER TYPE 43
4.3 DISTRIBUTED FIBER OPTIC SENSOR MARKET, BY SCATTERING METHOD 44
4.4 DISTRIBUTED FIBER OPTIC SENSOR MARKET, BY OPERATING PRINCIPLE 44
4.5 DISTRIBUTED FIBER OPTIC SENSOR MARKET IN NORTH AMERICA,
BY FIBER TYPE AND COUNTRY 45
4.6 DISTRIBUTED FIBER OPTIC SENSOR MARKET, BY COUNTRY 45
5 MARKET OVERVIEW 46
5.1 INTRODUCTION 46
5.2 MARKET DYNAMICS 46
5.2.1 DRIVERS 47
5.2.1.1 Rapid digitalization and automation in oil & gas sector 47
5.2.1.2 Rising emphasis on efficient structural health monitoring 47
5.2.1.3 Increasing innovation in sensors to improve wellbore surveillance 47
5.2.1.4 Rise in smart cities and adoption of Internet of Things 48
5.2.2 RESTRAINTS 49
5.2.2.1 Technical issues associated with installing distributed sensors 49
5.2.2.2 High initial investments 49
5.2.3 OPPORTUNITIES 50
5.2.3.1 Growing emphasis on data-driven decision-making 50
5.2.3.2 Increasing offshore drilling and oil & gas exploration 50
5.2.3.3 Rising implementation of stringent regulations to reduce emissions 50
5.2.4 CHALLENGES 51
5.2.4.1 High costs of distributed sensor technologies 51
5.3 VALUE CHAIN ANALYSIS 52
5.4 ECOSYSTEM ANALYSIS 54
5.5 TRENDS/DISRUPTIONS IMPACTING CUSTOMER BUSINESS 55
5.6 TECHNOLOGY ANALYSIS 56
5.6.1 KEY TECHNOLOGIES 56
5.6.1.1 Quasi-distributed sensing 56
5.6.1.2 Distributed sensing 56
5.6.1.3 Interferometry 57
5.6.2 COMPLEMENTARY TECHNOLOGIES 57
5.6.2.1 Internet of Things 57
5.6.3 ADJACENT TECHNOLOGIES 57
5.6.3.1 Wireless sensor networks 57
5.7 INVESTMENT AND FUNDING SCENARIO 58
5.8 PORTER’S FIVE FORCES ANALYSIS 58
5.8.1 INTENSITY OF COMPETITIVE RIVALRY 60
5.8.2 BARGAINING POWER OF SUPPLIERS 60
5.8.3 BARGAINING POWER OF BUYERS 60
5.8.4 THREAT OF SUBSTITUTES 60
5.8.5 THREAT OF NEW ENTRANTS 60
5.9 KEY STAKEHOLDERS AND BUYING CRITERIA 61
5.9.1 KEY STAKEHOLDERS IN BUYING PROCESS 61
5.9.2 BUYING CRITERIA 62
5.10 CASE STUDY ANALYSIS 63
5.10.1 AP SENSING PROVIDES DISTRIBUTED ACOUSTIC SENSING SOLUTION FOR POWER CABLE FAULT DETECTION IN EUROPE 63
5.10.2 DEUTSCHE BAHN UTILIZES AP SENSING’S N52-SERIES DISTRIBUTED ACOUSTIC SENSING UNIT TO PREVENT CABLE THEFT 63
5.10.3 PUBLIC WORKS AUTHORITY OF QATAR INSTALLS AP SENSING LINEAR
HEAT DETECTION DEVICES FOR MONITORING PURPOSES 64
5.10.4 SLB INTRODUCES WELLWATCHER BRITEBLUE HT DISTRIBUTED TEMPERATURE SENSING FIBER TO MONITOR STEAM FLOOD OPERATING TEMPERATURE IN CANADA 64
5.10.5 SLB DEPLOYS HIGH DEFINITION VERTICAL SEISMIC DAS SYSTEM
FOR BOREHOLE SEISMIC SURVEY IN BELGIUM 65
5.11 TRADE ANALYSIS 65
5.11.1 IMPORT SCENARIO (HS CODE 9001) 65
5.11.2 EXPORT SCENARIO (HS CODE 9001) 67
5.12 PATENT ANALYSIS 68
5.13 KEY CONFERENCES AND EVENTS, 2024–2025 71
5.14 TARIFF AND REGULATORY LANDSCAPE 72
5.14.1 TARIFF ANALYSIS (HS CODE 9001) 72
5.14.2 REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS 74
5.14.3 REGULATIONS 76
5.15 IMPACT OF GEN AI/AI ON DISTRIBUTED FIBER OPTIC SENSOR MARKET 77
5.16 PRICING ANALYSIS 78
5.16.1 AVERAGE SELLING PRICE TREND OF DISTRIBUTED FIBER OPTIC SENSORS,
BY APPLICATION, 2020–2023 79
5.16.2 AVERAGE SELLING PRICE TREND OF DISTRIBUTED FIBER OPTIC SENSORS,
BY REGION, 2020–2023 79
6 DISTRIBUTED FIBER OPTIC SENSOR MARKET, BY FIBER TYPE 81
6.1 INTRODUCTION 82
6.2 SINGLE-MODE 83
6.2.1 RISING DEMAND FOR HIGH-SPEED, LONG-DISTANCE DATA TRANSMISSION TO FOSTER SEGMENTAL GROWTH 83
6.3 MULTI-MODE 84
6.3.1 INCREASING USE IN SHORT-DISTANCE, HIGH-DENSITY ENVIRONMENTS TO ACCELERATE SEGMENTAL GROWTH 84
7 DISTRIBUTED FIBER OPTIC SENSOR MARKET, BY OPERATING PRINCIPLE 86
7.1 INTRODUCTION 87
7.2 OPTICAL TIME DOMAIN REFLECTOMETRY 88
7.2.1 INCREASING ADOPTION OF FIBER OPTIC NETWORKS IN TELECOM, DATA CENTER, AND OTHER INDUSTRIES TO DRIVE MARKET 88
7.3 OPTICAL FREQUENCY DOMAIN REFLECTOMETRY 89
7.3.1 RISING NEED TO CLOSELY EXAMINE HYDROGEOLOGICAL PROCESSES TO BOOST SEGMENTAL GROWTH 89
8 DISTRIBUTED FIBER OPTIC SENSOR MARKET, BY SCATTERING METHOD 91
8.1 INTRODUCTION 92
8.2 RAMAN SCATTERING METHOD 94
8.2.1 MOUNTING DEMAND FOR REAL-TIME TEMPERATURE MONITORING IN OIL
& GAS AND OTHER INDUSTRIES TO EXPEDITE SEGMENTAL GROWTH 94
8.3 RAYLEIGH SCATTERING & FIBER BRAGG GRATING METHOD 94
8.3.1 RISING NEED FOR PRECISE, LONG-DISTANCE INFRASTRUCTURE MONITORING TO BOLSTER SEGMENTAL GROWTH 94
8.4 BRILLOUIN SCATTERING METHOD 95
8.4.1 INCREASING FOCUS ON DUAL-PARAMETER MONITORING IN STRUCTURAL HEALTH APPLICATIONS TO DRIVE MARKET 95
9 DISTRIBUTED FIBER OPTIC SENSOR MARKET, BY APPLICATION 96
9.1 INTRODUCTION 97
9.2 TEMPERATURE SENSING 98
9.2.1 BURGEONING DEMAND FOR ACCURATE, LONG-RANGE, AND RELIABLE MONITORING TECHNOLOGIES TO DRIVE MARKET 98
9.3 ACOUSTIC SENSING 100
9.3.1 INCREASING FOCUS ON MONITORING AND SURVEILLANCE OF PIPELINE SYSTEMS TO FOSTER SEGMENTAL GROWTH 100
9.4 STRAIN SENSING 102
9.4.1 MOUNTING ADOPTION OF SMART INFRASTRUCTURE AND IOT-DRIVEN SYSTEMS TO CONTRIBUTE TO SEGMENTAL GROWTH 102
10 DISTRIBUTED FIBER OPTIC SENSOR MARKET, BY VERTICAL 104
10.1 INTRODUCTION 105
10.2 OIL & GAS 106
10.2.1 RISING DEPLOYMENT OF DISTRIBUTED ACOUSTIC SENSING SYSTEMS
TO MONITOR AND CONTROL PIPELINE SYSTEMS TO DRIVE MARKET 106
10.3 POWER & UTILITY 108
10.3.1 RAPID EXPANSION OF ALL-FIBER NETWORKS TO CONTRIBUTE TO SEGMENTAL GROWTH 108
10.4 SAFETY & SECURITY 110
10.4.1 INCREASING NEED FOR REAL-TIME, CONTINUOUS MONITORING OF CRITICAL INFRASTRUCTURE TO AUGMENT SEGMENTAL GROWTH 110
10.5 INDUSTRIAL 111
10.5.1 RISING INTEGRATION OF IOT AND OTHER ADVANCED TECHNOLOGIES INTO AUTOMATION SOLUTIONS TO BOLSTER SEGMENTAL GROWTH 111
10.6 INFRASTRUCTURE 113
10.6.1 GROWING EMPHASIS ON MONITORING HERITAGE STRUCTURES USING FIBER OPTIC SENSORS TO FUEL SEGMENTAL GROWTH 113
10.7 TELECOMMUNICATIONS 115
10.7.1 MOUNTING DEMAND FOR HIGH-SPEED DATA TRANSMISSION AND BANDWIDTH TO CONTRIBUTE TO SEGMENTAL GROWTH 115
11 DISTRIBUTED FIBER OPTIC SENSOR MARKET, BY REGION 117
11.1 INTRODUCTION 118
11.2 NORTH AMERICA 119
11.2.1 MACROECONOMIC OUTLOOK FOR NORTH AMERICA 120
11.2.2 US 124
11.2.2.1 Increasing production of oil and related products to contribute
to market growth 124
11.2.3 CANADA 125
11.2.3.1 Growing emphasis on fire and safety measures to accelerate
market growth 125
11.2.4 MEXICO 126
11.2.4.1 Rising focus on preventing hazardous incidents in oil & gas
sector to foster market growth 126
11.3 EUROPE 127
11.3.1 MACROECONOMIC OUTLOOK FOR EUROPE 127
11.3.2 RUSSIA 132
11.3.2.1 Rising investment in energy & defense sectors to drive market 132
11.3.3 SCANDINAVIA 133
11.3.3.1 Increasing penetration of renewable energy in Scandinavian countries to spur market growth 133
11.3.4 UK 134
11.3.4.1 Burgeoning demand for structural health monitoring solutions to boost market growth 134
11.3.5 GERMANY 134
11.3.5.1 Rapid infrastructure development to contribute to market growth 134
11.3.6 REST OF EUROPE 135
11.4 ASIA PACIFIC 136
11.4.1 MACROECONOMIC OUTLOOK FOR ASIA PACIFIC 136
11.4.2 CHINA 141
11.4.2.1 Rising focus on meeting energy demand to contribute to
market growth 141
11.4.3 JAPAN 142
11.4.3.1 Increasing export of liquefied natural gas to augment market growth 142
11.4.4 INDONESIA 143
11.4.4.1 Ongoing oil & gas exploration activities to bolster market growth 143
11.4.5 INDIA 143
11.4.5.1 Rapid expansion of power transmission networks to fuel
market growth 143
11.4.6 REST OF ASIA PACIFIC 144
11.5 MIDDLE EAST 145
11.5.1 MACROECONOMIC OUTLOOK FOR MIDDLE EAST 145
11.5.2 SAUDI ARABIA 148
11.5.2.1 Rising oil & gas production projects to boost market growth 148
11.5.3 IRAQ 149
11.5.3.1 Increasing focus on infrastructure modernization to augment
market growth 149
11.5.4 IRAN 150
11.5.4.1 Rising government initiatives related to oil & gas production
to spur market growth 150
11.5.5 REST OF MIDDLE EAST 151
11.6 ROW 152
11.6.1 MACROECONOMIC OUTLOOK FOR ROW 152
11.6.2 AFRICA 155
11.6.2.1 Rising government initiatives to enhance industrial
sector to drive market 155
11.6.3 SOUTH & CENTRAL AMERICA 156
11.6.3.1 Brazil 158
11.6.3.1.1 High government expenditure on infrastructure to accelerate market growth 158
11.6.3.2 Argentina 159
11.6.3.2.1 Thriving industrial and safety & security verticals to
expedite market growth 159
11.6.3.3 Venezuela 160
11.6.3.3.1 Escalating oil & gas production and infrastructure modernization to foster market growth 160
11.6.3.4 Rest of South & Central America 160
12 COMPETITIVE LANDSCAPE 161
12.1 OVERVIEW 161
12.2 KEY PLAYER STRATEGIES/RIGHT TO WIN, 2021–2024 161
12.3 REVENUE ANALYSIS, 2019–2023 164
12.4 MARKET SHARE ANALYSIS, 2023 164
12.5 COMPANY VALUATION AND FINANCIAL METRICS, 2024 167
12.6 BRAND COMPARISON 168
12.7 COMPANY EVALUATION MATRIX: KEY PLAYERS, 2023 168
12.7.1 STARS 168
12.7.2 EMERGING LEADERS 168
12.7.3 PERVASIVE PLAYERS 169
12.7.4 PARTICIPANTS 169
12.7.5 COMPANY FOOTPRINT: KEY PLAYERS, 2023 170
12.7.5.1 Company footprint 170
12.7.5.2 Region footprint 170
12.7.5.3 Application footprint 171
12.7.5.4 Vertical footprint 171
12.8 COMPANY EVALUATION MATRIX: STARTUPS/SMES, 2023 172
12.8.1 PROGRESSIVE COMPANIES 172
12.8.2 RESPONSIVE COMPANIES 172
12.8.3 DYNAMIC COMPANIES 172
12.8.4 STARTING BLOCKS 172
12.8.5 COMPETITIVE BENCHMARKING: STARTUPS/SMES, 2023 174
12.8.5.1 Detailed list of key startups/SMEs 174
12.8.5.2 Competitive benchmarking of key startups/SMEs 174
12.9 COMPETITIVE SCENARIO 175
12.9.1 PRODUCT LAUNCHES 175
12.9.2 DEALS 177
13 COMPANY PROFILES 181
13.1 KEY PLAYERS 181
13.1.1 SLB 181
13.1.1.1 Business overview 181
13.1.1.2 Products/Services/Solutions offered 183
13.1.1.3 Recent developments 184
13.1.1.3.1 Deals 184
13.1.1.4 MnM view 185
13.1.1.4.1 Key strengths/Right to win 185
13.1.1.4.2 Strategic choices 185
13.1.1.4.3 Weaknesses/Competitive threats 185
13.1.2 HALLIBURTON 186
13.1.2.1 Business overview 186
13.1.2.2 Products/Services/Solutions offered 187
13.1.2.3 Recent developments 188
13.1.2.3.1 Deals 188
13.1.2.4 MnM view 188
13.1.2.4.1 Key strengths/Right to win 188
13.1.2.4.2 Strategic choices 188
13.1.2.4.3 Weaknesses/Competitive threats 188
13.1.3 YOKOGAWA ELECTRIC CORPORATION 189
13.1.3.1 Business overview 189
13.1.3.2 Products/Services/Solutions offered 190
13.1.3.3 Recent developments 191
13.1.3.3.1 Product launches 191
13.1.3.3.2 Deals 192
13.1.3.4 MnM view 192
13.1.3.4.1 Key strengths/Right to win 192
13.1.3.4.2 Strategic choices 192
13.1.3.4.3 Weaknesses/Competitive threats 192
13.1.4 WEATHERFORD 193
13.1.4.1 Business overview 193
13.1.4.2 Products/Services/Solutions offered 194
13.1.4.3 Recent developments 194
13.1.4.3.1 Deals 194
13.1.4.4 MnM view 195
13.1.4.4.1 Key strengths/Right to win 195
13.1.4.4.2 Strategic choices 195
13.1.4.4.3 Weaknesses/Competitive threats 195
13.1.5 LUNA INNOVATIONS INCORPORATED 196
13.1.5.1 Business overview 196
13.1.5.2 Products/Services/Solutions offered 197
13.1.5.3 Recent developments 199
13.1.5.3.1 Deals 199
13.1.5.4 MnM view 200
13.1.5.4.1 Key strengths/Right to win 200
13.1.5.4.2 Strategic choices 200
13.1.5.4.3 Weaknesses/Competitive threats 200
13.1.6 OFS FITEL, LLC 201
13.1.6.1 Business overview 201
13.1.6.2 Products/Services/Solutions offered 201
13.1.6.3 Recent developments 202
13.1.6.3.1 Product launches 202
13.1.6.3.2 Deals 203
13.1.7 BANDWEAVER 204
13.1.7.1 Business overview 204
13.1.7.2 Products/Services/Solutions offered 205
13.1.7.3 Recent developments 205
13.1.7.3.1 Product launches 205
13.1.8 OMNISENS 206
13.1.8.1 Business overview 206
13.1.8.2 Products/Services/Solutions offered 206
13.1.9 AP SENSING 208
13.1.9.1 Business overview 208
13.1.9.2 Products/Services/Solutions offered 208
13.1.9.3 Recent developments 209
13.1.9.3.1 Product launches 209
13.1.9.3.2 Deals 209
13.1.10 DARKPULSE INC 210
13.1.10.1 Business overview 210
13.1.10.2 Products/Services/Solutions offered 210
13.1.10.3 Recent developments 211
13.1.10.3.1 Deals 211
13.2 OTHER PLAYERS 212
13.2.1 AFL 212
13.2.2 ARAGON PHOTONICS 213
13.2.3 CORNING INCORPORATED 214
13.2.4 FOTECH 215
13.2.5 HIFI ENGINEERING INC. 216
13.2.6 HAWK MEASUREMENT SYSTEMS 217
13.2.7 NKT PHOTONICS A/S 218
13.2.8 OPTROMIX, INC. 219
13.2.9 OZ OPTICS LTD. 220
13.2.10 SENSORNET 221
13.2.11 SENSURON 222
13.2.12 COM & SENS 223
13.2.13 SOLIFOS 223
13.2.14 VIAVI SOLUTIONS INC. 224
13.2.15 ZIEBEL 224
14 APPENDIX 225
14.1 INSIGHTS FROM INDUSTRY EXPERTS 225
14.2 DISCUSSION GUIDE 226
14.3 KNOWLEDGESTORE: MARKETSANDMARKETS’ SUBSCRIPTION PORTAL 230
14.4 CUSTOMIZATION OPTIONS 232
14.5 RELATED REPORTS 232
14.6 AUTHOR DETAILS 233
❖ 世界の分散型光ファイバーセンサー(DFOS)市場に関するよくある質問(FAQ) ❖
・分散型光ファイバーセンサー(DFOS)の世界市場規模は?
→MarketsandMarkets社は2024年の分散型光ファイバーセンサー(DFOS)の世界市場規模を14億1170万米ドルと推定しています。
・分散型光ファイバーセンサー(DFOS)の世界市場予測は?
→MarketsandMarkets社は2030年の分散型光ファイバーセンサー(DFOS)の世界市場規模を26億3070万米ドルと予測しています。
・分散型光ファイバーセンサー(DFOS)市場の成長率は?
→MarketsandMarkets社は分散型光ファイバーセンサー(DFOS)の世界市場が2024年~2030年に年平均10.9%成長すると予測しています。
・世界の分散型光ファイバーセンサー(DFOS)市場における主要企業は?
→MarketsandMarkets社は「SLB(米国)、Halliburton(米国)、横河電機(日本)、Weatherford(米国)、Luna Innovations Incorporated(米国)、Omnisens(スイス)、OFS Fitel, LLC(米国)、Bandweaver(英国)、AP Sensing(ドイツ)、DarkPulse Inc(米国)など ...」をグローバル分散型光ファイバーセンサー(DFOS)市場の主要企業として認識しています。
※上記FAQの市場規模、市場予測、成長率、主要企業に関する情報は本レポートの概要を作成した時点での情報であり、納品レポートの情報と少し異なる場合があります。