世界の航空宇宙用センサー市場(~2030年):種類別(圧力センサー、温度センサー、近接センサー、位置センサー、慣性センサー、流量センサー、レベルセンサー、画像センサー、煙検知センサー、振動センサー、ジャイロスコープ、その他)、プラットフォーム別、コネクティビティ別、用途別、エンドユーザー別、地域別

【英語タイトル】Aerospace Sensors Market Forecasts to 2030 – Global Analysis By Type (Pressure Sensors, Temperature Sensors, Proximity Sensors, Position Sensors, Inertial Sensors, Flow Sensors, Level Sensors, Image Sensors, Smoke detection sensor, Vibration Sensors, Gyroscope and Other Types), Platform, Connectivity, Application, End User and By Geography

Stratistics MRCが出版した調査資料(SMRC24NOV222)・商品コード:SMRC24NOV222
・発行会社(調査会社):Stratistics MRC
・発行日:2024年8月
・ページ数:200 Pages
・レポート言語:英語
・レポート形式:PDF
・納品方法:Eメール
・調査対象地域:グローバル
・産業分野:航空宇宙
◆販売価格オプション(消費税別)
Single User LicenseUSD4,150 ⇒換算¥630,800見積依頼/購入/質問フォーム
Corporate LicenseUSD7,500 ⇒換算¥1,140,000見積依頼/購入/質問フォーム
販売価格オプションの説明
※お支払金額:換算金額(日本円)+消費税
※納期:即日〜2営業日(3日以上かかる場合は別途表記又はご連絡)
※お支払方法:納品日+5日以内に請求書を発行・送付(請求書発行日より2ヶ月以内に銀行振込、振込先:三菱UFJ銀行/H&Iグローバルリサーチ株式会社、支払期限と方法は調整可能)
❖ レポートの概要 ❖

Stratistics MRCによると、航空宇宙用センサの世界市場は2024年に13億ドルを占め、予測期間中の年平均成長率は12.5%で、2030年には28億ドルに達する見込みです。航空宇宙用センサは、航空機や宇宙船の操作、安全性、性能に重要な各種パラメータを測定・監視するために航空宇宙産業で使用される特殊な装置です。これらのセンサーは、温度、圧力、加速度、高度などの物理量や、風速や風向などの環境要因を検出することができます。リアルタイムのデータを提供することで、航空宇宙センサは航空宇宙システムの正確な制御と調整を可能にし、運用効率と安全性を向上させます。最新の航空宇宙センサは、業界の厳しい要件を満たすために、MEMS(Micro-Electro-Mechanical Systems)や光学センサなどの高度な技術を組み込んでいます。
市場ダイナミクス

ドライバー
民間航空産業の拡大
航空会社や航空機メーカーが安全性、効率性、乗客体験の向上に注力するにつれ、高度なセンサーの必要性が高まっています。最新の民間航空機には、飛行制御システム、エンジン性能モニタリング、環境センシングなど、さまざまな用途のセンサーが必要です。この成長はセンサー技術の革新を促進し、より正確で信頼性が高く、小型化されたセンサーの開発につながります。さらに、この拡大は、進化する業界標準や規制要件に対応するための研究開発への投資を促します。

阻害要因
高コストと複雑な開発
航空宇宙用センサーに求められる高度な技術には、多額の研究開発費がかかることが多く、メーカーのコスト増につながります。こうした高コストは、中小企業の市場参入を制限し、競争を制限する可能性があるため、技術革新が阻害され、価格が高騰する可能性があります。さらに、厳格な試験、認証、厳しい業界標準への準拠を必要とする航空宇宙用センサーの開発は複雑であるため、開発サイクルが長期化し、市場成長の妨げとなるリスクが高くなります。

機会:
次世代航空機の開発
次世代航空機には最先端のシステムや素材が組み込まれていることが多く、性能と安全性を高めるためにより高度なセンサーが必要になります。これらの航空機は、改良された空気力学、高度な推進システム、統合されたアビオニクスなどの技術革新を特徴としており、これらすべてに高精度で信頼性の高いセンサーが求められます。このような航空機設計の進化は、研究開発努力を加速させ、小型化やデジタルシステムとの統合など、センサー技術の進歩につながっています。

脅威:
強力な市場ポジションを持つ既存企業の存在
支配的な企業は多くの場合、高度な技術、広範な研究開発能力、確立された顧客関係などの多大なリソースを有しており、競争を阻害する可能性があります。このような市場の集中は、価格の上昇や技術革新の低下につながる可能性があります。さらに、中小企業は価格と技術で競争するのに苦労し、市場の多様性が制限される可能性があります。

COVID-19の影響:
COVID-19は、サプライチェーンを混乱させ、生産を遅延させ、民間航空の低迷による需要減退をもたらし、航空宇宙用センサー市場に大きな影響を与えました。パンデミックにより、航空機の運航と製造が減少し、センサーの販売に影響が出ました。しかし、この危機は健康モニタリングや遠隔診断への関心を加速させ、将来的にセンサー・アプリケーションの新たな機会を生み出す可能性もあります。産業が回復するにつれて、高度なセンサーの需要は徐々に回復すると予想されます。

予測期間中、温度センサセグメントが最大になる見込み
温度センサは、エンジン、アビオニクス、環境システムなどの重要なコンポーネントを監視し、安全性と性能の維持に不可欠なデータを提供するため、予測期間中に最大となる見込み。したがって、航空宇宙技術が進歩するにつれて、より精密で堅牢な温度センサーの需要が増加します。より高い精度、より広い温度範囲、耐久性の向上など、温度センシングにおける技術革新が市場成長の原動力となっています。

予測期間中、飛行制御システム分野のCAGRが最も高い見込み
飛行制御システムは、加速度計、ジャイロスコープ、圧力センサーなどの各種センサーに依存して、航空機の性能、安定性、方向に関するリアルタイムデータを提供するため、予測期間中のCAGRは飛行制御システム分野が最も高くなると予想されます。航空機が高度化し、フライ・バイ・ワイヤ技術や高度な自動操縦システムなどの機能が組み込まれるにつれて、さまざまな条件下で正確で信頼性の高いデータを提供できる高精度センサーの必要性が高まっています。

最大のシェアを占める地域
北アメリカは、航空宇宙アプリケーションの性能と信頼性を高めるMEMS(Micro-Electro-Mechanical Systems)などの最先端センサ技術の開発でリードしているため、予測期間中に最大の市場シェアを占めると予測されています。さらに、航空機や宇宙船の安全性、燃料効率、運用性能の向上が重視されていることも、先進センサーの需要を後押ししています。

CAGRが最も高い地域:
アジア太平洋地域は、中国やインドのような国々で民間航空部門が活況を呈しているため、予測期間中に最も高いCAGRを維持すると予測されています。航空機の増加や機体の拡大により、安全性、効率性、性能のために高度なセンサーの統合が必要となり、また、現地航空機メーカーやサプライヤーの台頭が、新しい航空機モデルやアップグレードに使用されるセンサーの需要増加に寄与しています。

市場の主要企業
航空宇宙用センサ市場の主要企業には、Ametek Inc.、Avidyne Corporation、Curtiss-Wright Corporation、Honeywell International Inc.、Hydra-Electric Company、Lockheed Martin Corporation、Meggitt PLC、PCB Piezotronics Inc.、Precision Sensors、Raytheon Technologies Corporation、Safran SA、Schneider Electric SE、TE Connectivity Ltd.、THALES、General Electric Company、Woodward Inc.、Zodiac Aerospaceなどがあります。

主な展開
2024年7月、RTXはエアバスのパイオニアラボ・ヘリコプター・デモンストレーター用のハイブリッド電気システムを共同開発。このハイブリッド・エレクトリック構成は、最適化されたエンジン性能と電気モーターによる効率改善を可能にするよう設計されています。

2024年7月、RTXはClean Aviation SWITCHプロジェクト向けのハイブリッド電気Pratt & Whitney GTF™エンジン実証機の予備設計レビューを完了しました。ハイブリッド電気推進システムは、飛行の全段階にわたってエンジン効率を高めることを目的としており、将来の短・中距離航空機の燃料消費と排出を削減する可能性を提供します。

2024年7月、GEヴェルノヴァはドイツの送電事業者とイノベーション契約を締結し、将来の電力ネットワーク向けのキーHVDC技術を開発しました。研究開発契約は、TenneT TSO GmbH、50Hertz Transmission GmbH、Amprion GmbH、transnet BW GmbHと設計に関するものです。

対象タイプ
– 圧力センサー
– 温度センサー
– 近接センサー
– 位置センサー
– 慣性センサ
– 流量センサ
– レベル・センサ
– 画像センサ
– 煙センサ
– 振動センサー
– ジャイロスコープ
– その他のタイプ

対象プラットフォーム
– 民間航空機
– 軍用機
– 回転翼航空機
– UAV(無人航空機)
– その他のプラットフォーム

コネクティビティ
– 有線センサー
– ワイヤレスセンサー

対象アプリケーション
– 飛行制御システム
– 環境制御システム
– 着陸装置システム
– エンジン制御システム
– コックピット制御システム
– 構造ヘルスモニタリング
– 燃料管理システム

対象エンドユーザー
– 航空機メーカー
– MROサービスプロバイダー
– アップグレード&レトロフィットプロバイダー
– その他のエンドユーザー

対象地域
– 北アメリカ
アメリカ
カナダ
メキシコ
– ヨーロッパ
ドイツ
イギリス
イタリア
フランス
スペイン
その他のヨーロッパ
– アジア太平洋
日本
中国
インド
オーストラリア
ニュージーランド
韓国
その他のアジア太平洋地域
– 南アメリカ
アルゼンチン
ブラジル
チリ
その他の南アメリカ諸国
– 中東/アフリカ
サウジアラビア
アラブ首長国連邦
カタール
南アフリカ
その他の中東/アフリカ

レポート内容
– 地域および国レベルセグメントの市場シェア評価
– 新規参入企業への戦略的提言
– 2022年、2023年、2024年、2026年、2030年の市場データをカバー
– 市場動向(促進要因、制約要因、機会、脅威、課題、投資機会、推奨事項)
– 市場予測に基づく主要ビジネスセグメントにおける戦略的提言
– 主要な共通トレンドをマッピングした競合のランドスケープ
– 詳細な戦略、財務、最近の動向を含む企業プロファイリング
– 最新の技術進歩をマッピングしたサプライチェーン動向

グローバル市場調査レポート販売サイトのwww.marketreport.jpです。

❖ レポートの目次 ❖

1 エグゼクティブ・サマリー
2 序文
2.1 概要
2.2 ステークホルダー
2.3 調査範囲
2.4 調査方法
2.4.1 データマイニング
2.4.2 データ分析
2.4.3 データの検証
2.4.4 リサーチアプローチ
2.5 リサーチソース
2.5.1 一次調査ソース
2.5.2 セカンダリーリサーチソース
2.5.3 前提条件
3 市場動向分析
3.1 はじめに
3.2 推進要因
3.3 抑制要因
3.4 機会
3.5 脅威
3.6 アプリケーション分析
3.7 エンドユーザー分析
3.8 新興市場
3.9 Covid-19の影響
4 ポーターズファイブフォース分析
4.1 供給者の交渉力
4.2 買い手の交渉力
4.3 代替品の脅威
4.4 新規参入の脅威
4.5 競争上のライバル関係
5 航空宇宙用センサーの世界市場、タイプ別
5.1 はじめに
5.2 圧力センサー
5.3 温度センサー
5.4 近接センサー
5.5 位置センサー
5.6 慣性センサ
5.7 フローセンサー
5.8 レベル・センサ
5.9 画像センサ
5.10 煙センサ
5.11 振動センサー
5.12 ジャイロスコープ
5.13 その他のタイプ
6 航空宇宙用センサーの世界市場、プラットフォーム別
6.1 はじめに
6.2 民間航空機
6.2.1 ナローボディ
6.2.2 ワイドボディ
6.2.3 リージョナルジェット
6.2.4 ビジネスジェット
6.3 軍用機
6.4 回転翼航空機
6.5 UAV(無人航空機)
6.6 その他のプラットフォーム
7 航空宇宙用センサーの世界市場、接続性別
7.1 はじめに
7.2 有線センサー
7.3 ワイヤレスセンサー
8 航空宇宙用センサの世界市場:用途別
8.1 はじめに
8.2 飛行制御システム
8.3 環境制御システム
8.4 着陸装置システム
8.5 エンジン制御システム
8.6 コックピット制御システム
8.7 構造ヘルスモニタリング
8.8 燃料管理システム
9 航空宇宙用センサーの世界市場、エンドユーザー別
9.1 はじめに
9.2 航空機メーカー
9.3 MROサービスプロバイダー
9.4 アップグレード&レトロフィットプロバイダー
9.5 その他のエンドユーザー
10 航空宇宙用センサーの世界市場、地域別
10.1 はじめに
10.2 北アメリカ
10.2.1 アメリカ
10.2.2 カナダ
10.2.3 メキシコ
10.3 ヨーロッパ
10.3.1 ドイツ
10.3.2 イギリス
10.3.3 イタリア
10.3.4 フランス
10.3.5 スペイン
10.3.6 その他のヨーロッパ
10.4 アジア太平洋
10.4.1 日本
10.4.2 中国
10.4.3 インド
10.4.4 オーストラリア
10.4.5 ニュージーランド
10.4.6 韓国
10.4.7 その他のアジア太平洋地域
10.5 南アメリカ
10.5.1 アルゼンチン
10.5.2 ブラジル
10.5.3 チリ
10.5.4 その他の南アメリカ地域
10.6 中東・アフリカ
10.6.1 サウジアラビア
10.6.2 アラブ首長国連邦
10.6.3 カタール
10.6.4 南アフリカ
10.6.5 その他の中東・アフリカ地域
11 主要開発
11.1 契約、パートナーシップ、提携、合弁事業
11.2 買収と合併
11.3 新製品上市
11.4 事業拡大
11.5 その他の主要戦略
12 企業プロフィール
12.1 Ametek Inc.
12.2 Avidyne Corporation
12.3 Curtiss-Wright Corporation
12.4 Honeywell International Inc.
12.5 Hydra-Electric Company
12.6 Lockheed Martin Corporation
12.7 Meggitt PLC
12.8 PCB Piezotronics Inc.
12.9 Precision Sensors
12.10 Raytheon Technologies Corporation
12.11 Safran SA
12.12 Schneider Electric SE
12.13 TE Connectivity Ltd.
12.14 THALES
12.15 General Electric Company
12.16 Woodward Inc.
12.17 Zodiac Aerospace
表一覧
表1 航空宇宙用センサーの世界市場展望、地域別(2022-2030年) ($MN)
表2 航空宇宙用センサーの世界市場展望、タイプ別(2022-2030年) ($MN)
表3 航空宇宙用センサの世界市場展望、圧力センサ別 (2022-2030) ($MN)
表4 航空宇宙用センサの世界市場展望、温度センサ別 (2022-2030) ($MN)
表5 航空宇宙用センサの世界市場展望、近接センサ別 (2022-2030) ($MN)
表6 航空宇宙用センサの世界市場展望、位置センサ別 (2022-2030) ($MN)
表7 航空宇宙用センサの世界市場展望、慣性センサ別 (2022-2030) ($MN)
表8 航空宇宙用センサの世界市場展望、流量センサ別 (2022-2030) ($MN)
表9 航空宇宙用センサの世界市場展望、レベルセンサ別 (2022-2030) ($MN)
表10 航空宇宙用センサの世界市場展望、画像センサ別 (2022-2030) ($MN)
表11 航空宇宙用センサの世界市場展望、煙検知センサ別 (2022-2030) ($MN)
表12 航空宇宙用センサの世界市場展望、振動センサ別 (2022-2030) ($MN)
表13 航空宇宙用センサの世界市場展望、ジャイロスコープ別 (2022-2030) ($MN)
表14 航空宇宙用センサの世界市場展望、その他のタイプ別 (2022-2030) ($MN)
表15 航空宇宙用センサの世界市場展望、プラットフォーム別 (2022-2030) ($MN)
表16 航空宇宙用センサの世界市場展望:民間航空機別 (2022-2030) ($MN)
表17 航空宇宙用センサの世界市場展望、ナローボディ別 (2022-2030) ($MN)
表18 航空宇宙用センサの世界市場展望、ワイドボディ別 (2022-2030) ($MN)
表19 航空宇宙用センサの世界市場展望、リージョナルジェット別 (2022-2030) ($MN)
表20 航空宇宙用センサの世界市場展望、ビジネスジェット機別 (2022-2030) ($MN)
表21 航空宇宙用センサの世界市場展望、軍用機別 (2022-2030) ($MN)
表22 航空宇宙用センサーの世界市場展望:回転翼航空機別 (2022-2030) ($MN)
表23 航空宇宙センサーの世界市場展望、UAV(無人航空機)別 (2022-2030) ($MN)
表24 航空宇宙用センサの世界市場展望、その他のプラットフォーム別 (2022-2030) ($MN)
表25 航空宇宙用センサーの世界市場展望、接続性別 (2022-2030) ($MN)
表26 航空宇宙用センサの世界市場展望、有線センサ別 (2022-2030) ($MN)
表27 航空宇宙用センサの世界市場展望、ワイヤレスセンサ別 (2022-2030) ($MN)
表28 航空宇宙用センサの世界市場展望、用途別 (2022-2030) ($MN)
表29 航空宇宙用センサの世界市場展望、飛行制御システム別 (2022-2030) ($MN)
表30 航空宇宙用センサの世界市場展望、環境制御システム別 (2022-2030) ($MN)
表31 航空宇宙用センサの世界市場展望、着陸装置システム別 (2022-2030) ($MN)
表32 航空宇宙用センサの世界市場展望、エンジン制御システム別 (2022-2030) ($MN)
表33 航空宇宙用センサの世界市場展望、コックピット制御システム別 (2022-2030) ($MN)
表34 航空宇宙用センサの世界市場展望、構造ヘルスモニタリング別 (2022-2030) ($MN)
表35 航空宇宙用センサーの世界市場展望、燃料管理システム別 (2022-2030) ($MN)
表36 航空宇宙用センサーの世界市場展望、エンドユーザー別 (2022-2030) ($MN)
表37 航空宇宙用センサの世界市場展望、航空機メーカー別 (2022-2030) ($MN)
表38 航空宇宙用センサの世界市場展望、MROサービスプロバイダ別 (2022-2030) ($MN)
表39 航空宇宙用センサーの世界市場展望:アップグレード&レトロフィットプロバイダー別 (2022-2030) ($MN)
表40 航空宇宙用センサーの世界市場展望、その他のエンドユーザー別 (2022-2030) ($MN)
注:北アメリカ、ヨーロッパ、APAC、南アメリカ、中東・アフリカ地域の表も上記と同様に表現しています。

According to Stratistics MRC, the Global Aerospace Sensors Market is accounted for $1.3 billion in 2024 and is expected to reach $2.8 billion by 2030 growing at a CAGR of 12.5% during the forecast period. Aerospace sensors are specialized devices used in the aerospace industry to measure and monitor various parameters crucial for the operation, safety, and performance of aircraft and spacecraft. These sensors can detect physical quantities such as temperature, pressure, acceleration, and altitude, as well as environmental factors like wind speed and direction. By providing real-time data, aerospace sensors enable precise control and adjustment of aerospace systems, enhancing operational efficiency and safety and the modern aerospace sensors often incorporate advanced technologies, such as MEMS (Micro-Electro-Mechanical Systems) and optical sensors, to meet the stringent requirements of the industry.

Market Dynamics:

Driver:
Expanding commercial aviation industry
As airlines and aircraft manufacturers focus on enhancing safety, efficiency, and passenger experience, the need for sophisticated sensors increases. Modern commercial aircraft require sensors for various applications, including flight control systems, engine performance monitoring, and environmental sensing. This growth fuels innovation in sensor technology, leading to the development of more accurate, reliable, and miniaturized sensors. Additionally, the expansion prompts investments in research and development to meet evolving industry standards and regulatory requirements.

Restraint:
High costs and complex development
Advanced technology required for aerospace sensors often involves substantial research and development expenses, leading to increased costs for manufacturers. These high costs can restrict market entry for smaller companies and limit competition, potentially stifling innovation and keeping prices elevated. Additionally, the complexity of developing aerospace sensors necessitating rigorous testing, certification, and compliance with stringent industry standards can result in longer development cycles and higher risks hindering market growth.

Opportunity:
Development of next-generation aircraft
Next-generation aircraft often incorporate cutting-edge systems and materials, requiring more sophisticated sensors for enhanced performance and safety. These aircraft feature innovations such as improved aerodynamics, advanced propulsion systems, and integrated avionics, all of which demand highly precise and reliable sensors. This evolution in aircraft design accelerates research and development efforts, leading to advancements in sensor technology, such as increased miniaturization and integration with digital systems.

Threat:
Presence of established players with strong market positions
Dominant firms often have significant resources, including advanced technology, extensive R&D capabilities, and established customer relationships, which can stifle competition. This market concentration can lead to higher prices and reduced innovation, as the major players may have less incentive to push for breakthroughs or lower costs. Additionally, smaller firms may struggle to compete on price and technology, limiting diversity in the market.

Covid-19 Impact:
COVID-19 had a significant impact on the aerospace sensors market by disrupting supply chains, delaying production, and leading to decreased demand due to a downturn in commercial aviation. The pandemic resulted in reduced flight operations and aircraft manufacturing, which affected sensor sales. However, the crisis also accelerated interest in health monitoring and remote diagnostics, potentially creating new opportunities for sensor applications in the future. As the industry recovers, demand for advanced sensors is expected to gradually rebound.

The temperature sensors segment is expected to be the largest during the forecast period
The temperature sensors is expected to be the largest during the forecast period as they monitor critical components such as engines, avionics, and environmental systems, providing essential data for maintaining safety and performance. Thus as aerospace technology advances, the demand for more precise and robust temperature sensors increases. Innovations in temperature sensing, such as those offering greater accuracy, wider temperature ranges, and improved durability, drive market growth.

The flight control systems segment is expected to have the highest CAGR during the forecast period
The flight control systems segment is expected to have the highest CAGR during the forecast period because these systems rely on a range of sensors, including accelerometers, gyroscopes, and pressure sensors, to provide real-time data on aircraft performance, stability, and orientation. As aircraft become more sophisticated, incorporating features such as fly-by-wire technology and advanced autopilot systems, the need for high-precision sensors that can deliver accurate and reliable data under various conditions increases.

Region with largest share:
North America is projected to hold the largest market share during the forecast period as North America leads in the development of cutting-edge sensor technologies, such as MEMS (Micro-Electro-Mechanical Systems), which enhance performance and reliability in aerospace applications. Further the emphasis on improving safety, fuel efficiency, and operational performance in aircraft and spacecraft drives demand for advanced sensors.

Region with highest CAGR:
Asia Pacific is projected to hold the highest CAGR over the forecast period owing to the booming commercial aviation sector in countries like China and India drives demand for advanced aerospace sensors. Increased air travel and fleet expansion necessitate the integration of sophisticated sensors for safety, efficiency, and performance and the rise of local aircraft manufacturers and suppliers contributes to the increased demand for sensors used in new aircraft models and upgrades.

Key players in the market
Some of the key players in Aerospace Sensors market include Ametek Inc., Avidyne Corporation, Curtiss-Wright Corporation, Honeywell International Inc., Hydra-Electric Company, Lockheed Martin Corporation, Meggitt PLC, PCB Piezotronics Inc., Precision Sensors, Raytheon Technologies Corporation, Safran SA, Schneider Electric SE, TE Connectivity Ltd., THALES, General Electric Company, Woodward Inc. and Zodiac Aerospace

Key Developments:
In July 2024, RTX collaborated on hybrid-electric system for Airbus PioneerLab helicopter demonstrator. This hybrid-electric configuration is designed to enable optimized engine performance and improved efficiency, with the electric motors

In July 2024, RTX completed preliminary design review of hybrid-electric Pratt & Whitney GTF™ engine demonstrator for Clean Aviation SWITCH project. The hybrid-electric propulsion system aims to enhance engine efficiency across all phases of flight, offering the potential to reduce fuel burn and emissions for future short- and medium-range aircraft.

In July 2024, GE Vernova entered into innovation agreement with German Grid Transmission Operators to develop Key HVDC technology for future electricity network. The R&D agreement with TenneT TSO GmbH, 50Hertz Transmission GmbH, Amprion GmbH and transnet BW GmbH for the design

Types Covered:
• Pressure Sensors
• Temperature Sensors
• Proximity Sensors
• Position Sensors
• Inertial Sensors
• Flow Sensors
• Level Sensors
• Image Sensors
• Smoke detection sensor
• Vibration Sensors
• Gyroscope
• Other Types

Platforms Covered:
• Commercial Aircraft
• Military Aircraft
• Rotary Blade Aircraft
• UAVs (Unmanned Aerial Vehicle)
• Other Platforms

Connectivities Covered:
• Wired Sensors
• Wireless Sensors

Applications Covered:
• Flight Control Systems
• Environmental Control Systems
• Landing Gear Systems
• Engine Control Systems
• Cockpit Control Systems
• Structural Health Monitoring
• Fuel Management Systems

End Users Covered:
• Aircraft Manufacturers
• MRO Service Providers
• Upgrade & Retrofit Providers
• Other End Users

Regions Covered:
• North America
US
Canada
Mexico
• Europe
Germany
UK
Italy
France
Spain
Rest of Europe
• Asia Pacific
Japan
China
India
Australia
New Zealand
South Korea
Rest of Asia Pacific
• South America
Argentina
Brazil
Chile
Rest of South America
• Middle East & Africa
Saudi Arabia
UAE
Qatar
South Africa
Rest of Middle East & Africa

What our report offers:
- Market share assessments for the regional and country-level segments
- Strategic recommendations for the new entrants
- Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
- Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
- Strategic recommendations in key business segments based on the market estimations
- Competitive landscaping mapping the key common trends
- Company profiling with detailed strategies, financials, and recent developments
- Supply chain trends mapping the latest technological advancements

1 Executive Summary
2 Preface
2.1 Abstract
2.2 Stake Holders
2.3 Research Scope
2.4 Research Methodology
2.4.1 Data Mining
2.4.2 Data Analysis
2.4.3 Data Validation
2.4.4 Research Approach
2.5 Research Sources
2.5.1 Primary Research Sources
2.5.2 Secondary Research Sources
2.5.3 Assumptions
3 Market Trend Analysis
3.1 Introduction
3.2 Drivers
3.3 Restraints
3.4 Opportunities
3.5 Threats
3.6 Application Analysis
3.7 End User Analysis
3.8 Emerging Markets
3.9 Impact of Covid-19
4 Porters Five Force Analysis
4.1 Bargaining power of suppliers
4.2 Bargaining power of buyers
4.3 Threat of substitutes
4.4 Threat of new entrants
4.5 Competitive rivalry
5 Global Aerospace Sensors Market, By Type
5.1 Introduction
5.2 Pressure Sensors
5.3 Temperature Sensors
5.4 Proximity Sensors
5.5 Position Sensors
5.6 Inertial Sensors
5.7 Flow Sensors
5.8 Level Sensors
5.9 Image Sensors
5.10 Smoke detection sensor
5.11 Vibration Sensors
5.12 Gyroscope
5.13 Other Types
6 Global Aerospace Sensors Market, By Platform
6.1 Introduction
6.2 Commercial Aircraft
6.2.1 Narrow Body
6.2.2 Wide Body
6.2.3 Regional Jet
6.2.4 Business Jet
6.3 Military Aircraft
6.4 Rotary Blade Aircraft
6.5 UAVs (Unmanned Aerial Vehicle)
6.6 Other Platforms
7 Global Aerospace Sensors Market, By Connectivity
7.1 Introduction
7.2 Wired Sensors
7.3 Wireless Sensors
8 Global Aerospace Sensors Market, By Application
8.1 Introduction
8.2 Flight Control Systems
8.3 Environmental Control Systems
8.4 Landing Gear Systems
8.5 Engine Control Systems
8.6 Cockpit Control Systems
8.7 Structural Health Monitoring
8.8 Fuel Management Systems
9 Global Aerospace Sensors Market, By End User
9.1 Introduction
9.2 Aircraft Manufacturers
9.3 MRO Service Providers
9.4 Upgrade & Retrofit Providers
9.5 Other End Users
10 Global Aerospace Sensors Market, By Geography
10.1 Introduction
10.2 North America
10.2.1 US
10.2.2 Canada
10.2.3 Mexico
10.3 Europe
10.3.1 Germany
10.3.2 UK
10.3.3 Italy
10.3.4 France
10.3.5 Spain
10.3.6 Rest of Europe
10.4 Asia Pacific
10.4.1 Japan
10.4.2 China
10.4.3 India
10.4.4 Australia
10.4.5 New Zealand
10.4.6 South Korea
10.4.7 Rest of Asia Pacific
10.5 South America
10.5.1 Argentina
10.5.2 Brazil
10.5.3 Chile
10.5.4 Rest of South America
10.6 Middle East & Africa
10.6.1 Saudi Arabia
10.6.2 UAE
10.6.3 Qatar
10.6.4 South Africa
10.6.5 Rest of Middle East & Africa
11 Key Developments
11.1 Agreements, Partnerships, Collaborations and Joint Ventures
11.2 Acquisitions & Mergers
11.3 New Product Launch
11.4 Expansions
11.5 Other Key Strategies
12 Company Profiling
12.1 Ametek Inc.
12.2 Avidyne Corporation
12.3 Curtiss-Wright Corporation
12.4 Honeywell International Inc.
12.5 Hydra-Electric Company
12.6 Lockheed Martin Corporation
12.7 Meggitt PLC
12.8 PCB Piezotronics Inc.
12.9 Precision Sensors
12.10 Raytheon Technologies Corporation
12.11 Safran SA
12.12 Schneider Electric SE
12.13 TE Connectivity Ltd.
12.14 THALES
12.15 General Electric Company
12.16 Woodward Inc.
12.17 Zodiac Aerospace
List of Tables
Table 1 Global Aerospace Sensors Market Outlook, By Region (2022-2030) ($MN)
Table 2 Global Aerospace Sensors Market Outlook, By Type (2022-2030) ($MN)
Table 3 Global Aerospace Sensors Market Outlook, By Pressure Sensors (2022-2030) ($MN)
Table 4 Global Aerospace Sensors Market Outlook, By Temperature Sensors (2022-2030) ($MN)
Table 5 Global Aerospace Sensors Market Outlook, By Proximity Sensors (2022-2030) ($MN)
Table 6 Global Aerospace Sensors Market Outlook, By Position Sensors (2022-2030) ($MN)
Table 7 Global Aerospace Sensors Market Outlook, By Inertial Sensors (2022-2030) ($MN)
Table 8 Global Aerospace Sensors Market Outlook, By Flow Sensors (2022-2030) ($MN)
Table 9 Global Aerospace Sensors Market Outlook, By Level Sensors (2022-2030) ($MN)
Table 10 Global Aerospace Sensors Market Outlook, By Image Sensors (2022-2030) ($MN)
Table 11 Global Aerospace Sensors Market Outlook, By Smoke detection sensor (2022-2030) ($MN)
Table 12 Global Aerospace Sensors Market Outlook, By Vibration Sensors (2022-2030) ($MN)
Table 13 Global Aerospace Sensors Market Outlook, By Gyroscope (2022-2030) ($MN)
Table 14 Global Aerospace Sensors Market Outlook, By Other Types (2022-2030) ($MN)
Table 15 Global Aerospace Sensors Market Outlook, By Platform (2022-2030) ($MN)
Table 16 Global Aerospace Sensors Market Outlook, By Commercial Aircraft (2022-2030) ($MN)
Table 17 Global Aerospace Sensors Market Outlook, By Narrow Body (2022-2030) ($MN)
Table 18 Global Aerospace Sensors Market Outlook, By Wide Body (2022-2030) ($MN)
Table 19 Global Aerospace Sensors Market Outlook, By Regional Jet (2022-2030) ($MN)
Table 20 Global Aerospace Sensors Market Outlook, By Business Jet (2022-2030) ($MN)
Table 21 Global Aerospace Sensors Market Outlook, By Military Aircraft (2022-2030) ($MN)
Table 22 Global Aerospace Sensors Market Outlook, By Rotary Blade Aircraft (2022-2030) ($MN)
Table 23 Global Aerospace Sensors Market Outlook, By UAVs (Unmanned Aerial Vehicle) (2022-2030) ($MN)
Table 24 Global Aerospace Sensors Market Outlook, By Other Platforms (2022-2030) ($MN)
Table 25 Global Aerospace Sensors Market Outlook, By Connectivity (2022-2030) ($MN)
Table 26 Global Aerospace Sensors Market Outlook, By Wired Sensors (2022-2030) ($MN)
Table 27 Global Aerospace Sensors Market Outlook, By Wireless Sensors (2022-2030) ($MN)
Table 28 Global Aerospace Sensors Market Outlook, By Application (2022-2030) ($MN)
Table 29 Global Aerospace Sensors Market Outlook, By Flight Control Systems (2022-2030) ($MN)
Table 30 Global Aerospace Sensors Market Outlook, By Environmental Control Systems (2022-2030) ($MN)
Table 31 Global Aerospace Sensors Market Outlook, By Landing Gear Systems (2022-2030) ($MN)
Table 32 Global Aerospace Sensors Market Outlook, By Engine Control Systems (2022-2030) ($MN)
Table 33 Global Aerospace Sensors Market Outlook, By Cockpit Control Systems (2022-2030) ($MN)
Table 34 Global Aerospace Sensors Market Outlook, By Structural Health Monitoring (2022-2030) ($MN)
Table 35 Global Aerospace Sensors Market Outlook, By Fuel Management Systems (2022-2030) ($MN)
Table 36 Global Aerospace Sensors Market Outlook, By End User (2022-2030) ($MN)
Table 37 Global Aerospace Sensors Market Outlook, By Aircraft Manufacturers (2022-2030) ($MN)
Table 38 Global Aerospace Sensors Market Outlook, By MRO Service Providers (2022-2030) ($MN)
Table 39 Global Aerospace Sensors Market Outlook, By Upgrade & Retrofit Providers (2022-2030) ($MN)
Table 40 Global Aerospace Sensors Market Outlook, By Other End Users (2022-2030) ($MN)
Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.

★調査レポート[世界の航空宇宙用センサー市場(~2030年):種類別(圧力センサー、温度センサー、近接センサー、位置センサー、慣性センサー、流量センサー、レベルセンサー、画像センサー、煙検知センサー、振動センサー、ジャイロスコープ、その他)、プラットフォーム別、コネクティビティ別、用途別、エンドユーザー別、地域別] (コード:SMRC24NOV222)販売に関する免責事項を必ずご確認ください。
★調査レポート[世界の航空宇宙用センサー市場(~2030年):種類別(圧力センサー、温度センサー、近接センサー、位置センサー、慣性センサー、流量センサー、レベルセンサー、画像センサー、煙検知センサー、振動センサー、ジャイロスコープ、その他)、プラットフォーム別、コネクティビティ別、用途別、エンドユーザー別、地域別]についてメールでお問い合わせ


◆H&Iグローバルリサーチのお客様(例)◆