1 エグゼクティブ・サマリー
2 序文
2.1 概要
2.2 ステークホルダー
2.3 調査範囲
2.4 調査方法
2.4.1 データマイニング
2.4.2 データ分析
2.4.3 データの検証
2.4.4 リサーチアプローチ
2.5 リサーチソース
2.5.1 一次調査ソース
2.5.2 セカンダリーリサーチソース
2.5.3 前提条件
3 市場動向分析
3.1 はじめに
3.2 推進要因
3.3 抑制要因
3.4 機会
3.5 脅威
3.6 技術分析
3.7 アプリケーション分析
3.8 エンドユーザー分析
3.9 新興市場
3.10 Covid-19の影響
4 ポーターズファイブフォース分析
4.1 供給者の交渉力
4.2 買い手の交渉力
4.3 代替品の脅威
4.4 新規参入の脅威
4.5 競争上のライバル関係
5 農業用画像センサの世界市場、センサタイプ別
5.1 はじめに
5.2 マルチスペクトルセンサ
5.3 ハイパースペクトルセンサ
5.4 熱センサ
5.5 RGB(赤、緑、青)センサ
5.6 LiDARセンサ
5.7 その他のセンサタイプ
6 農業用画像センサの世界市場、プラットフォーム別
6.1 はじめに
6.2 空中ベースセンサ
6.3 地上型センサ
6.4 その他のプラットフォーム
7 農業用画像センサの世界市場:技術別
7.1 はじめに
7.2 イメージング技術
7.3 非イメージング技術
7.4 その他の技術
8 農業用画像センサの世界市場:用途別
8.1 はじめに
8.2 作物モニタリング
8.3 土壌モニタリング
8.4 灌漑モニタリング
8.5 収量モニタリング
8.6 フィールドマッピング
8.7 病害虫検出
8.8 天気予報
8.9 家畜モニタリング
8.10 その他の用途
9 農業用画像センサの世界市場、エンドユーザー別
9.1 はじめに
9.2 農家と農学者
9.3 農業協同組合
9.4 研究機関
9.5 政府機関
9.6 農業機器メーカー
9.7 その他のエンドユーザー
10 農業用画像センサの世界市場、地域別
10.1 はじめに
10.2 北米
10.2.1 アメリカ
10.2.2 カナダ
10.2.3 メキシコ
10.3 ヨーロッパ
10.3.1 ドイツ
10.3.2 イギリス
10.3.3 イタリア
10.3.4 フランス
10.3.5 スペイン
10.3.6 その他のヨーロッパ
10.4 アジア太平洋
10.4.1 日本
10.4.2 中国
10.4.3 インド
10.4.4 オーストラリア
10.4.5 ニュージーランド
10.4.6 韓国
10.4.7 その他のアジア太平洋地域
10.5 南米
10.5.1 アルゼンチン
10.5.2 ブラジル
10.5.3 チリ
10.5.4 その他の南米地域
10.6 中東・アフリカ
10.6.1 サウジアラビア
10.6.2 アラブ首長国連邦
10.6.3 カタール
10.6.4 南アフリカ
10.6.5 その他の中東・アフリカ地域
11 主要開発
11.1 契約、パートナーシップ、提携、合弁事業
11.2 買収と合併
11.3 新製品上市
11.4 事業拡大
11.5 その他の主要戦略
12 企業プロファイリング
表一覧
表1 農業用画像センサの世界市場展望、地域別(2022-2030年)(MNドル)
表2 農業用画像センサの世界市場展望、センサタイプ別(2022-2030年) ($MN)
表3 農業用画像センサの世界市場展望、マルチスペクトルセンサ別 (2022-2030) ($MN)
表4 農業用画像センサの世界市場展望、ハイパースペクトルセンサ別 (2022-2030) ($MN)
表5 農業用画像センサの世界市場展望、熱センサ別 (2022-2030) ($MN)
表6 農業用画像センサの世界市場展望、RGB(赤、緑、青)センサ別 (2022-2030) ($MN)
表7 農業用画像センサの世界市場展望、LiDARセンサ別 (2022-2030) ($MN)
表8 農業用画像センサの世界市場展望、その他のセンサタイプ別 (2022-2030) ($MN)
表9 農業用画像センサの世界市場展望、プラットフォーム別 (2022-2030) ($MN)
表10 農業用画像センサの世界市場展望、空中ベースセンサ別 (2022-2030) ($MN)
表11 農業用画像センサの世界市場展望、地上ベースセンサ別 (2022-2030) ($MN)
表12 農業用画像センサの世界市場展望、その他のプラットフォーム別 (2022-2030) ($MN)
表13 農業用画像センサの世界市場展望、技術別 (2022-2030) ($MN)
表14 農業用画像センサの世界市場展望、画像技術別 (2022-2030) ($MN)
表15 農業用画像センサの世界市場展望、非画像技術別 (2022-2030) ($MN)
表16 農業用画像センサの世界市場展望、その他の技術別 (2022-2030) ($MN)
表17 農業用画像センサの世界市場展望、用途別 (2022-2030) ($MN)
表18 農業用画像センサの世界市場展望、作物モニタリング別 (2022-2030) ($MN)
表19 農業用画像センサの世界市場展望:土壌モニタリング別(2022-2030年) ($MN)
表20 農業用画像センサの世界市場展望、灌漑モニタリング別 (2022-2030) ($MN)
表21 農業用画像センサの世界市場展望、収量モニタリング別 (2022-2030) ($MN)
表22 農業用画像センサの世界市場展望:フィールドマッピング別(2022-2030年) ($MN)
表23 農業用画像センサの世界市場展望、病気と害虫検出別 (2022-2030) ($MN)
表24 農業用画像センサの世界市場展望、天気予報別 (2022-2030) ($MN)
表25 農業用画像センサの世界市場展望、家畜モニタリング別 (2022-2030) ($MN)
表26 農業用画像センサの世界市場展望、その他の用途別 (2022-2030) ($MN)
表27 農業用画像センサの世界市場展望、エンドユーザー別 (2022-2030) ($MN)
表28 農業用画像センサの世界市場展望:農家と農学者別 (2022-2030) ($MN)
表29 農業用画像センサの世界市場展望、農業協同組合別 (2022-2030) ($MN)
表30 農業用画像センサの世界市場展望、研究機関別 (2022-2030) ($MN)
表31 農業用画像センサの世界市場展望:政府機関別 (2022-2030) ($MN)
表32 農業用画像センサの世界市場展望:農業機器メーカー別 (2022-2030) ($MN)
表33 農業用画像センサの世界市場展望:その他のエンドユーザー別 (2022-2030) ($MN)
注:北米、ヨーロッパ、APAC、南米、中東・アフリカ地域の表も上記と同様に表現しています。
According to the Modern Agriculture Demonstration Zone Research, installing sensors can help farmers mitigate the effects of drought and reduce labor and maintenance costs by at least 20% when it comes to protected agriculture.
Market Dynamics:
Driver:
Growing emphasis on precision farming practices
As farmers increasingly seek to optimize yields and minimize resource waste, imaging sensors provide critical data on crop health, soil conditions, and environmental factors. This data-driven approach allows for targeted interventions, such as precise irrigation, fertilization, and pest control. Additionally, the integration of imaging sensors with advanced analytics and AI technologies facilitates informed decision-making, enabling farmers to adopt sustainable practices. This trend toward precision agriculture drives demand for innovative imaging solutions, fostering market growth and advancing agricultural sustainability.
Restraint:
Technical complexities
Technical complexity in agriculture imaging sensors arises from the sophisticated technologies involved, such as multispectral and hyperspectral imaging, which require specialized knowledge for operation and data interpretation. Farmers and agronomists may struggle with the steep learning curve associated with these advanced systems, leading to underutilization. This lack of expertise can hamper market growth, as potential users may be deterred by the perceived difficulty and time required to effectively integrate these technologies into their practices.
Opportunity:
Sustainability trends
Sustainability trends significantly emphasize the need for efficient resource management and environmentally friendly farming practices. As consumers increasingly demand sustainably sourced food, farmers are compelled to adopt technologies that minimize waste, reduce chemical usage, and optimize water consumption. Agriculture imaging sensors play a crucial role in this transformation. By providing data-driven insights, these sensors empower farmers to make informed decisions, leading to sustainable practices that enhance productivity while preserving natural resources, thus driving market expansion.
Threat:
High initial investment
High initial investment costs in agriculture imaging sensors arise from the advanced technology, sophisticated equipment, and installation expenses involved. Farmers, especially those operating on a smaller scale, may find it challenging to allocate funds for such investments, leading to limited adoption. Additionally, the perceived return on investment may take time to materialize, further discouraging farmers from embracing these advanced imaging solutions, thereby slowing overall market expansion.
Covid-19 Impact
The covid-19 pandemic significantly impacted the agriculture imaging sensor market by disrupting supply chains, delaying manufacturing, and affecting the deployment of agricultural technologies. Restrictions on movement hindered the adoption of precision farming practices, as farmers faced labor shortages and reduced access to technology. However, the pandemic also accelerated the demand for digital farming solutions, as remote monitoring became essential. Increased awareness of food security and sustainable farming practices further boosted interest in agriculture imaging sensors post-pandemic, driving market growth.
The aerial-based sensors segment is expected to be the largest during the forecast period
The aerial-based sensors segment is predicted to secure the largest market share throughout the forecast period. Aerial-based sensors in agriculture imaging utilize drones or aircraft to capture high-resolution images and data of crops and landscapes. These sensors employ technologies like multispectral and thermal imaging to assess plant health, soil moisture, and nutrient levels from above. Their ability to cover large areas quickly and efficiently makes them invaluable for modern farming, promoting sustainable agricultural practices and informed decision-making.
The yield monitoring segment is expected to have the highest CAGR during the forecast period
The yield monitoring segment is anticipated to witness the highest CAGR during the forecast period. Yield monitoring in agriculture imaging sensors involves the use of advanced technologies to assess and analyze crop yields in real-time. By integrating sensors with harvesting equipment, farmers can collect data on yield quantities, quality, and variability across different field zones. Yield monitoring enhances decision-making regarding resource allocation, fertilization, and crop rotation, ultimately leading to improved productivity and profitability while promoting sustainable farming practices.
Region with largest share:
Asia Pacific is expected to register the largest market share during the forecast period driven by the increasing adoption of precision agriculture techniques and technological advancements. Countries like China, India, and Japan are leading the way, investing in smart farming technologies to enhance crop productivity and ensure food security. Government initiatives and support for sustainable agriculture further boost market demand. Overall, the region presents substantial opportunities for innovation and expansion in agricultural imaging solutions.
Region with highest CAGR:
North America is projected to witness the highest CAGR over the forecast period fuelled by advancements in precision agriculture and the increasing integration of technology in farming practices. The United States and Canada are at the forefront, with farmers adopting imaging sensors for crop monitoring, yield optimization, and resource management. Government initiatives promoting sustainable agriculture and the need for efficient food production further drive market expansion. Additionally, the rise of data analytics and AI in agricultural practices enhances the appeal of imaging sensors, offering significant opportunities for growth in this region.
Key players in the market
Some of the key players profiled in the Agriculture Imaging Sensor Market include Trimble Inc., Topcon Corporation, Deere & Company (John Deere), AGCO Corporation, Micasense, Inc., Tetracam Inc., Teledyne FLIR LLC, Sentera, LLC, Parrot SA, PrecisionHawk, SlantRange, Inc., Headwall Photonics, Inc., Pix4D SA, SenseFly (Parrot Group), DJI Innovations, Raptor Maps, Inc., Yara International ASA, Quantum Spatial, Hexagon Agriculture and Cropsense, Inc.
Key Developments:
In April 2024, Trimble announced updates to its precision agriculture solutions, branded as PTx. This initiative focuses on providing both factory-fit and retrofit upgrades for various agricultural machinery, thereby enhancing automation and data management capabilities for farmers. The updates are designed to improve operational efficiency by integrating advanced technologies into existing equipment, allowing for better data collection and analysis.
In February 2024, John Deere launched the See & Spray™ Ultimate, an advanced imaging sensor system aimed at revolutionizing weed management in agriculture. This innovative technology utilizes high-resolution cameras and sophisticated algorithms to identify and differentiate between crops and weeds in real time. By enabling targeted spraying, See & Spray™ Ultimate allows farmers to apply herbicides only where needed, significantly reducing the amount of chemicals used and minimizing environmental impact.
Sensor Types Covered:
• Multispectral Sensors
• Hyperspectral Sensors
• Thermal Sensors
• RGB (Red, Green, Blue) Sensors
• LiDAR Sensors
• Other Sensor Types
Platforms Covered:
• Aerial-based Sensors
• Ground-based Sensors
• Other Platforms
Technologies Covered:
• Imaging Technology
• Non-imaging Technology
• Other Technologies
Applications Covered:
• Crop Monitoring
• Soil Monitoring
• Irrigation Monitoring
• Yield Monitoring
• Field Mapping
• Disease and Pest Detection
• Weather Forecasting
• Livestock Monitoring
• Other Applications
End Users Covered:
• Farmers and Agronomists
• Agricultural Cooperatives
• Research Institutions
• Government Bodies
• Agricultural Equipment Manufacturers
• Other End Users
Regions Covered:
• North America
US
Canada
Mexico
• Europe
Germany
UK
Italy
France
Spain
Rest of Europe
• Asia Pacific
Japan
China
India
Australia
New Zealand
South Korea
Rest of Asia Pacific
• South America
Argentina
Brazil
Chile
Rest of South America
• Middle East & Africa
Saudi Arabia
UAE
Qatar
South Africa
Rest of Middle East & Africa
What our report offers:
- Market share assessments for the regional and country-level segments
- Strategic recommendations for the new entrants
- Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
- Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
- Strategic recommendations in key business segments based on the market estimations
- Competitive landscaping mapping the key common trends
- Company profiling with detailed strategies, financials, and recent developments
- Supply chain trends mapping the latest technological advancements
1 Executive Summary
2 Preface
2.1 Abstract
2.2 Stake Holders
2.3 Research Scope
2.4 Research Methodology
2.4.1 Data Mining
2.4.2 Data Analysis
2.4.3 Data Validation
2.4.4 Research Approach
2.5 Research Sources
2.5.1 Primary Research Sources
2.5.2 Secondary Research Sources
2.5.3 Assumptions
3 Market Trend Analysis
3.1 Introduction
3.2 Drivers
3.3 Restraints
3.4 Opportunities
3.5 Threats
3.6 Technology Analysis
3.7 Application Analysis
3.8 End User Analysis
3.9 Emerging Markets
3.10 Impact of Covid-19
4 Porters Five Force Analysis
4.1 Bargaining power of suppliers
4.2 Bargaining power of buyers
4.3 Threat of substitutes
4.4 Threat of new entrants
4.5 Competitive rivalry
5 Global Agriculture Imaging Sensor Market, By Sensor Type
5.1 Introduction
5.2 Multispectral Sensors
5.3 Hyperspectral Sensors
5.4 Thermal Sensors
5.5 RGB (Red, Green, Blue) Sensors
5.6 LiDAR Sensors
5.7 Other Sensor Types
6 Global Agriculture Imaging Sensor Market, By Platform
6.1 Introduction
6.2 Aerial-based Sensors
6.3 Ground-based Sensors
6.4 Other Platforms
7 Global Agriculture Imaging Sensor Market, By Technology
7.1 Introduction
7.2 Imaging Technology
7.3 Non-imaging Technology
7.4 Other Technologies
8 Global Agriculture Imaging Sensor Market, By Application
8.1 Introduction
8.2 Crop Monitoring
8.3 Soil Monitoring
8.4 Irrigation Monitoring
8.5 Yield Monitoring
8.6 Field Mapping
8.7 Disease and Pest Detection
8.8 Weather Forecasting
8.9 Livestock Monitoring
8.10 Other Applications
9 Global Agriculture Imaging Sensor Market, By End User
9.1 Introduction
9.2 Farmers and Agronomists
9.3 Agricultural Cooperatives
9.4 Research Institutions
9.5 Government Bodies
9.6 Agricultural Equipment Manufacturers
9.7 Other End Users
10 Global Agriculture Imaging Sensor Market, By Geography
10.1 Introduction
10.2 North America
10.2.1 US
10.2.2 Canada
10.2.3 Mexico
10.3 Europe
10.3.1 Germany
10.3.2 UK
10.3.3 Italy
10.3.4 France
10.3.5 Spain
10.3.6 Rest of Europe
10.4 Asia Pacific
10.4.1 Japan
10.4.2 China
10.4.3 India
10.4.4 Australia
10.4.5 New Zealand
10.4.6 South Korea
10.4.7 Rest of Asia Pacific
10.5 South America
10.5.1 Argentina
10.5.2 Brazil
10.5.3 Chile
10.5.4 Rest of South America
10.6 Middle East & Africa
10.6.1 Saudi Arabia
10.6.2 UAE
10.6.3 Qatar
10.6.4 South Africa
10.6.5 Rest of Middle East & Africa
11 Key Developments
11.1 Agreements, Partnerships, Collaborations and Joint Ventures
11.2 Acquisitions & Mergers
11.3 New Product Launch
11.4 Expansions
11.5 Other Key Strategies
12 Company Profiling
12.1 Trimble Inc.
12.2 Topcon Corporation
12.3 Deere & Company (John Deere)
12.4 AGCO Corporation
12.5 Micasense, Inc.
12.6 Tetracam Inc.
12.7 Teledyne FLIR LLC
12.8 Sentera, LLC
12.9 Parrot SA
12.10 PrecisionHawk
12.11 SlantRange, Inc.
12.12 Headwall Photonics, Inc.
12.13 Pix4D SA
12.14 SenseFly (Parrot Group)
12.15 DJI Innovations
12.16 Raptor Maps, Inc.
12.17 Yara International ASA
12.18 Quantum Spatial
12.19 Hexagon Agriculture
12.20 Cropsense, Inc.
List of Tables
Table 1 Global Agriculture Imaging Sensor Market Outlook, By Region (2022-2030) ($MN)
Table 2 Global Agriculture Imaging Sensor Market Outlook, By Sensor Type (2022-2030) ($MN)
Table 3 Global Agriculture Imaging Sensor Market Outlook, By Multispectral Sensors (2022-2030) ($MN)
Table 4 Global Agriculture Imaging Sensor Market Outlook, By Hyperspectral Sensors (2022-2030) ($MN)
Table 5 Global Agriculture Imaging Sensor Market Outlook, By Thermal Sensors (2022-2030) ($MN)
Table 6 Global Agriculture Imaging Sensor Market Outlook, By RGB (Red, Green, Blue) Sensors (2022-2030) ($MN)
Table 7 Global Agriculture Imaging Sensor Market Outlook, By LiDAR Sensors (2022-2030) ($MN)
Table 8 Global Agriculture Imaging Sensor Market Outlook, By Other Sensor Types (2022-2030) ($MN)
Table 9 Global Agriculture Imaging Sensor Market Outlook, By Platform (2022-2030) ($MN)
Table 10 Global Agriculture Imaging Sensor Market Outlook, By Aerial-based Sensors (2022-2030) ($MN)
Table 11 Global Agriculture Imaging Sensor Market Outlook, By Ground-based Sensors (2022-2030) ($MN)
Table 12 Global Agriculture Imaging Sensor Market Outlook, By Other Platforms (2022-2030) ($MN)
Table 13 Global Agriculture Imaging Sensor Market Outlook, By Technology (2022-2030) ($MN)
Table 14 Global Agriculture Imaging Sensor Market Outlook, By Imaging Technology (2022-2030) ($MN)
Table 15 Global Agriculture Imaging Sensor Market Outlook, By Non-imaging Technology (2022-2030) ($MN)
Table 16 Global Agriculture Imaging Sensor Market Outlook, By Other Technologies (2022-2030) ($MN)
Table 17 Global Agriculture Imaging Sensor Market Outlook, By Application (2022-2030) ($MN)
Table 18 Global Agriculture Imaging Sensor Market Outlook, By Crop Monitoring (2022-2030) ($MN)
Table 19 Global Agriculture Imaging Sensor Market Outlook, By Soil Monitoring (2022-2030) ($MN)
Table 20 Global Agriculture Imaging Sensor Market Outlook, By Irrigation Monitoring (2022-2030) ($MN)
Table 21 Global Agriculture Imaging Sensor Market Outlook, By Yield Monitoring (2022-2030) ($MN)
Table 22 Global Agriculture Imaging Sensor Market Outlook, By Field Mapping (2022-2030) ($MN)
Table 23 Global Agriculture Imaging Sensor Market Outlook, By Disease and Pest Detection (2022-2030) ($MN)
Table 24 Global Agriculture Imaging Sensor Market Outlook, By Weather Forecasting (2022-2030) ($MN)
Table 25 Global Agriculture Imaging Sensor Market Outlook, By Livestock Monitoring (2022-2030) ($MN)
Table 26 Global Agriculture Imaging Sensor Market Outlook, By Other Applications (2022-2030) ($MN)
Table 27 Global Agriculture Imaging Sensor Market Outlook, By End User (2022-2030) ($MN)
Table 28 Global Agriculture Imaging Sensor Market Outlook, By Farmers and Agronomists (2022-2030) ($MN)
Table 29 Global Agriculture Imaging Sensor Market Outlook, By Agricultural Cooperatives (2022-2030) ($MN)
Table 30 Global Agriculture Imaging Sensor Market Outlook, By Research Institutions (2022-2030) ($MN)
Table 31 Global Agriculture Imaging Sensor Market Outlook, By Government Bodies (2022-2030) ($MN)
Table 32 Global Agriculture Imaging Sensor Market Outlook, By Agricultural Equipment Manufacturers (2022-2030) ($MN)
Table 33 Global Agriculture Imaging Sensor Market Outlook, By Other End Users (2022-2030) ($MN)
Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.