1. 方法論と範囲
1.1. 調査方法
1.2. 調査目的と調査範囲
2. 定義と概要
3. エグゼクティブ・サマリー
3.1. 電圧別スニペット
3.2. コンポーネント別スニペット
3.3. 技術別スニペット
3.4. インストール別スニペット
3.5. 定格電圧別スニペット
3.6. エンドユーザー別スニペット
3.7. 地域別スニペット
4. ダイナミクス
4.1. 影響要因
4.1.1. 推進要因
4.1.1.1. インフラの台頭
4.1.1.2. スマートグリッド技術の採用増加
4.1.2. 阻害要因
4.1.2.1. 厳しい環境・安全規制
4.1.3. 機会
4.1.4. 影響分析
5. 産業分析
5.1. ポーターのファイブフォース分析
5.2. サプライチェーン分析
5.3. 価格分析
5.4. 規制分析
5.5. ロシア・ウクライナ戦争の影響分析
5.6. DMI意見
6. COVID-19分析
6.1. COVID-19の分析
6.1.1. COVID-19以前のシナリオ
6.1.2. COVID-19開催中のシナリオ
6.1.3. COVID-19後のシナリオ
6.2. COVID-19中の価格ダイナミクス
6.3. 需給スペクトラム
6.4. パンデミック時の市場に関連する政府の取り組み
6.5. メーカーの戦略的取り組み
6.6. 結論
7. 電圧別
7.1. はじめに
7.1.1. 電圧別市場規模分析および前年比成長率分析(%)
7.1.2. 市場魅力度指数, 電圧別
7.2. 低電圧*市場
7.2.1. 序論
7.2.2. 市場規模分析と前年比成長率分析(%)
7.3. 中電圧
7.4. 高電圧
8. コンポーネント別
8.1. 序論
8.1.1. 市場規模分析および前年比成長率分析(%), コンポーネント別
8.1.2. 市場魅力度指数(コンポーネント別
8.2. サーキットブレーカ
8.2.1. はじめに
8.2.2. 市場規模分析と前年比成長率分析(%)
8.3. ヒューズ
9. 技術別
9.1. 導入
9.1.1. 市場規模分析および前年比成長率分析(%), 技術別
9.1.2. 市場魅力度指数、技術別
9.2. エアブラストサーキットブレーカ
9.2.1. 導入
9.2.2. 市場規模分析と前年比成長率分析(%)
9.3. 真空サーキットブレーカ
9.4. オイルサーキットブレーカ
9.5. SF6サーキットブレーカ
9.6. その他
10. 設置別
10.1. 導入
10.1.1. 市場規模分析および前年比成長率分析(%), インストレーション別
10.1.2. 市場魅力度指数, インストレーション別
10.2. 屋内*市場
10.2.1. 導入
10.2.2. 市場規模分析と前年比成長率分析(%)
10.3. 屋外
11. 定格電圧別
11.1. はじめに
11.1.1. 定格電圧別市場規模分析および前年比成長率分析 (%)
11.1.2. 市場魅力度指数(定格電圧別
11.2. 500V*まで
11.2.1. 序論
11.2.2. 市場規模分析と前年比成長率分析 (%)
11.3. 500V – 50kV
11.4. 50kV – 300kV
11.5. 300kV – 800kV
11.6. 800kV以上
12. エンドユーザー別
12.1. はじめに
12.1.1. 市場規模分析と前年比成長率分析(%), エンドユーザー別
12.1.2. 市場魅力度指数、エンドユーザー別
12.2. 住宅*市場
12.2.1. はじめに
12.2.2. 市場規模分析と前年比成長率分析(%)
12.3. 商業
12.4. 産業用
12.5. 公益事業
12.6. その他
13. 地域別
13.1. はじめに
13.1.1. 地域別市場規模分析および前年比成長率分析(%)
13.1.2. 市場魅力度指数、地域別
13.2. 北米
13.2.1. 序論
13.2.2. 主な地域別ダイナミクス
13.2.3. 電圧別市場規模分析および前年比成長率分析(%)
13.2.4. 市場規模分析とYoY成長率分析(%)、コンポーネント別
13.2.5. 市場規模分析および前年比成長率分析(%)、技術別
13.2.6. 市場規模分析およびYoY成長率分析(%)、インストール別
13.2.7. 市場規模分析および前年比成長率分析 (%)、定格電圧別
13.2.8. 市場規模分析および前年比成長率分析(%)、エンドユーザー別
13.2.9. 市場規模分析および前年比成長率分析(%)、国別
13.2.9.1. 米国
13.2.9.2. カナダ
13.2.9.3. メキシコ
13.3. 欧州
13.3.1. はじめに
13.3.2. 主な地域別ダイナミクス
13.3.3. 電圧別市場規模分析および前年比成長率分析(%)
13.3.4. 市場規模分析とYoY成長率分析(%)、コンポーネント別
13.3.5. 市場規模分析および前年比成長率分析(%)、技術別
13.3.6. 市場規模分析およびYoY成長率分析(%)、インストール別
13.3.7. 市場規模分析および前年比成長率分析 (%)、定格電圧別
13.3.8. 市場規模分析および前年比成長率分析(%)、エンドユーザー別
13.3.9. 市場規模分析および前年比成長率分析(%)、国別
13.3.9.1. ドイツ
13.3.9.2. イギリス
13.3.9.3. フランス
13.3.9.4. イタリア
13.3.9.5. スペイン
13.3.9.6. その他のヨーロッパ
13.4. 南米
13.4.1. はじめに
13.4.2. 地域別主要市場
13.4.3. 電圧別市場規模分析および前年比成長率分析(%)
13.4.4. 市場規模分析とYoY成長率分析(%)、コンポーネント別
13.4.5. 市場規模分析および前年比成長率分析(%)、技術別
13.4.6. 市場規模分析およびYoY成長率分析(%)、インストール別
13.4.7. 市場規模分析および前年比成長率分析(%)、定格電圧別
13.4.8. 市場規模分析および前年比成長率分析(%)、エンドユーザー別
13.4.9. 市場規模分析および前年比成長率分析(%)、国別
13.4.9.1. ブラジル
13.4.9.2. アルゼンチン
13.4.9.3. その他の南米地域
13.5. アジア太平洋
13.5.1. はじめに
13.5.2. 主な地域別ダイナミクス
13.5.3. 電圧別市場規模分析および前年比成長率分析(%)
13.5.4. 市場規模分析とYoY成長率分析(%), コンポーネント別
13.5.5. 市場規模分析および前年比成長率分析(%)、技術別
13.5.6. 市場規模分析およびYoY成長率分析(%)、インストール別
13.5.7. 市場規模分析および前年比成長率分析(%)、定格電圧別
13.5.8. 市場規模分析および前年比成長率分析(%)、エンドユーザー別
13.5.9. 市場規模分析および前年比成長率分析(%)、国別
13.5.9.1. 中国
13.5.9.2. インド
13.5.9.3. 日本
13.5.9.4. オーストラリア
13.5.9.5. その他のアジア太平洋地域
13.6. 中東・アフリカ
13.6.1. 序論
13.6.2. 主な地域別ダイナミクス
13.6.3. 市場規模分析および前年比成長率分析(%), コンポーネント別
13.6.4. 市場規模分析とYoY成長率分析(%)、技術別
13.6.5. 市場規模分析およびYoY成長率分析(%)、インストール別
13.6.6. 市場規模分析および前年比成長率分析 (%)、定格電圧別
13.6.7. 市場規模分析および前年比成長率分析 (%)、エンドユーザー別
14. 競合情勢
14.1. 競争シナリオ
14.2. 市場ポジショニング/シェア分析
14.3. M&A分析
15. 企業プロフィール
15.1. ABB Ltd.*
15.1.1. Company Overview
15.1.2. Product Portfolio and Description
15.1.3. Financial Overview
15.1.4. Key Developments
15.2. Bel Fuse Inc.
15.3. Schneider Electric SE
15.4. Mitsubishi Electric Corporation
15.5. Eaton Corporation plc
15.6. General Electric Company
15.7. Siemens AG
15.8. Rockwell Automation, Inc.
15.9. Larsen & Toubro Limited
15.10. NXP Semiconductors N.V.
15.11. SCHURTER Holding AG
リストは網羅的ではありません
16. 付録
16.1. シュルターについて
16.2. お問い合わせ
Global Circuit Breaker Market reached US$ 19.16 billion in 2023 and is expected to reach US$ 29.68 billion by 2031, growing with a CAGR of 5.62% during the forecast period 2024-2031.
The circuit breaker sector is seeing significant expansion and innovation, propelled by technological advancements, increasing electrical demand and the use of renewable energy sources. As a significant actor in the energy sector. Targeted expenditures in renewable energy and grid modernization initiatives are propelling the need for high-voltage circuit breakers.
Accelerated urbanization and industry in the region are necessitating dependable power distribution infrastructure amid increasing electricity usage. Numerous countries globally possess power infrastructures that are inadequate to maintain the requisite standards of quality and large-scale power transmission necessary for diverse operations. Technologies developed in the early 1940s are now manifested as obsolete electric infrastructure.
According to US Department of Energy, 70% of transmission and transformer lines exceed 25 years in age, while 60% of circuit breakers surpass 30 years. Companies are prioritizing the modernization or transformation of infrastructure to support the new era of electric technologies and ensure reliability. Consequently, insufficient electrical power infrastructure is likely to present growth prospects for the circuit breaker and fuse industry.
Dynamics
Rising Infrastructure
The increasing global building of residential, commercial, governmental and industrial infrastructure, driven by population growth, urbanization and industrialization, is creating a demand for circuit breaker systems. According to the World Bank, the value added to the industrial sector, including construction, increased from US$ 23.47 trillion in 2019 to US$ 27.76 trillion in 2022 globally, significantly influencing infrastructure expansion.
The infrastructure necessitates circuit breakers to guarantee operational safety and efficiency by terminating electrical circuits during overloads or faults, thus minimizing equipment damage and reducing the risk of electrical fires. The incorporation of smart technologies and the Internet of Things (IoT) into infrastructure projects enhances the necessity for intelligent circuit protection solutions, hence fostering a favorable market outlook.
Increasing Adoption Of Smart Grid Technologies
A smart grid signifies a technological enhancement in electrical systems, facilitating bidirectional communication between utilities and consumers. Global power utilities are progressively investing in smart grid technologies to enhance power equipment management. Smart grids facilitate demand flexibility and increase consumer engagement in energy system operations via distributed generating and storage technologies. The emergence of the Internet of Things (IoT) has expedited the advancement of intelligent technologies in electricity transmission and distribution networks.
Smart circuit breakers (SCBs) are essential to this advancement, providing superior protection together with intelligent detection and management of grid failures. These systems necessitate a resilient network communication architecture to oversee the multitude of connected components and guarantee real-time information transmission. Global governments are instituting regulations to facilitate smart grid adoption, enhancing awareness of energy conservation and stimulating market expansion across diverse industries. Substantial money, shown by the US$ 3.4 billion designated by the ARRA in the US, bolsters these programs.
Stringent Environmental And Safety Regulations
The Kyoto Protocol designates sulfur hexafluoride (SF6) as one of the most powerful greenhouse gases (GHGs), possessing a global warming potential (GWP) of 23,000. The Intergovernmental Panel on Climate Change (IPCC) categorizes it as very detrimental, leading the Protocol to promote emissions reductions. At present, no alternatives can rival the efficiency of SF6, rendering its high procurement prices and regulatory constraints impediments to growth. SF6 circuit breakers frequently experience suboptimal joints, resulting in gas leakage that presents a suffocation hazard due to the gas's greater density than air.
Furthermore, the curved configuration of SF6 may be hazardous if breathed. The US Environmental Protection Agency (EPA) is proactively pursuing methods to identify SF6 leaks, particularly during arcing incidents. Consistent upkeep in a clean, arid setting is essential to avert harm to delicate components. The transportation and maintenance of SF6 necessitate specialist facilities, as any deterioration in gas quality directly affects the reliability of these circuit breakers. This challenge requires new solutions from industry stakeholders and technological specialists.
Segment Analysis
The global circuit breakers market is segmented based on voltage type, component, technology, installation, rated voltage, end-user and region.
Dominance of Vacuum Circuit Breakers in Power Protection Technology with Superior Insulation and Environmental Advancements
The vacuum circuit breaker technology category has commanded a significant part of the market in recent years. The vacuum circuit breaker possesses a superior insulating medium for arc extinction relative to other circuit breakers. Vacuum is a superior dielectric medium compared to many other insulating materials used in circuit breakers. It surpasses all other media, excluding air and SF6, which are utilized under high pressure. When an arc is extinguished by separating the contacts in a vacuum, an interruption transpires at the initial current zero. With arc interruption, their dielectric strength improves by a factor of thousands compared to other breakers.
In August 2022, Eaton introduced the MV VCPW-HD Medium-Voltage Vacuum Breaker. It surpasses user expectations with unparalleled durability and a space-efficient design. The VCPW-HD seal safeguards against dust and pollutants, ensuring prolonged equipment longevity. It is optimal for elevated altitudes, minimal shock, vibration and high ambient temperatures. The VCPW-HD is the unequivocal selection for ecologically aware individuals as it contains no SF6 gas.
Geographical Penetration
Asia-Pacific Dominance Driven By Power Transmission, Distribution and Renewable Energy Initiatives
The Asia-Pacific region possessed the biggest global market share for circuit breakers. The region is partitioned into China, Japan, India, South Korea, Australia and the remainder of the Asia-Pacific. China is the largest and most rapidly expanding market in the region. China is regarded as the preeminent authority in power transmission and distribution. The region's principal objective is to construct transmission lines that can convey substantial loads over extensive distances and to establish a reliable electricity infrastructure nationwide. Renewable energy initiatives such as wind and solar are rapidly expanding and evolving in China.
The Chinese government recently enacted the Renewable Energy Law, establishing a target of 20% of primary energy consumption derived from renewable sources. The Chinese government has commenced construction of the Three Gorges on Land wind project in Gansu province, which has the capacity to generate 22 GW of power. Consequently, it is probable that an increase in renewable energy projects will correspond with a rise in substation installations.
Competitive Landscape
The major global players in the market include ABB Ltd., Bel Fuse Inc., Schneider Electric SE, Mitsubishi Electric Corporation, Eaton Corporation plc, General Electric Company, Siemens AG, Rockwell Automation, Inc., Larsen & Toubro Limited, NXP Semiconductors N.V., SCHURTER Holding AG.
Russia-Ukraine War Impact Analysis
The Russia-Ukraine conflict has profoundly impacted the worldwide supply chain for circuit breakers, especially for components dependent on materials procured from Eastern Europe. Prior to the conflict, Ukraine served as a significant source of diverse raw materials, such as copper and aluminum, crucial for the production of electrical equipment.
The conflict has resulted in production setbacks and price increases, with copper prices escalating by more than 20% since early 2022. The supply chain disruptions have resulted in elevated expenses for businesses and, subsequently, increased prices for consumers.
Furthermore, geopolitical concerns have prompted a transition to alternate procurement techniques, as firms seek to diminish dependence on Eastern European suppliers. This has resulted in an increasing trend of investing in domestic manufacturing capacities and investigating alternate materials to alleviate hazards.
By Voltage
• Low Voltage
• Medium Voltage
• High Voltage
By Component
• Circuit Breaker
• Fuse
By Technology
• Air Blast Circuit Breakers
• Vacuum Circuit Breakers
• Oil Circuit Breaker
• SF6 Circuit Breaker
• Others
By Installation
• Indoor
• Outdoor
By Rated Voltage
• Upto 500V
• 500V – 50kV
• 50kV – 300kV
• 300kV – 800kV
• Above 800kV
By End-User
• Residential
• Commercial
• Industrial
• Utility
• Others
By Region
• North America
o US
o Canada
o Mexico
• Europe
o Germany
o UK
o France
o Italy
o Spain
o Rest of Europe
• South America
o Brazil
o Argentina
o Rest of South America
• Asia-Pacific
o China
o India
o Japan
o Australia
o Rest of Asia-Pacific
• Middle East and Africa
Key Developments
• In September 2022, Schneider Electric Infrastructure Ltd. (SEIL) declared its intention to establish a new manufacturing facility for vacuum circuit breakers in West Bengal, India. SEIL asserted that the capacity expansion will enable the company to satisfy domestic demand and enhance exports to Schneider Electric’s international divisions.
• In August 2022, Siemens AG introduced the 3VA UL big frame molded case circuit breakers, facilitating the development of robust, secure and intelligent systems, while enhancing and streamlining work processes.
Why Purchase the Report?
• To visualize the global circuit breakers market segmentation based on voltage type, component, technology, installation, rated voltage, end-user and region, as well as understand key commercial assets and players.
• Identify commercial opportunities by analyzing trends and co-development.
• Excel data sheet with numerous data points of the circuit breakers market-level with all segments.
• PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
• Product mapping available as excel consisting of key products of all the major players.
The global circuit breakers market report would provide approximately 89 tables, 87 figures and 234 Pages
Target Audience 2024
• Manufacturers/ Buyers
• Industry Investors/Investment Bankers
• Research Professionals
• Emerging Companies
1. Methodology and Scope
1.1. Research Methodology
1.2. Research Objective and Scope of the Report
2. Definition and Overview
3. Executive Summary
3.1. Snippet by Voltage
3.2. Snippet by Component
3.3. Snippet by Technology
3.4. Snippet by Installation
3.5. Snippet by Rated Voltage
3.6. Snippet by End-User
3.7. Snippet by Region
4. Dynamics
4.1. Impacting Factors
4.1.1. Drivers
4.1.1.1. Rising Infrastructure
4.1.1.2. Increasing Adoption Of Smart Grid Technologies
4.1.2. Restraints
4.1.2.1. Stringent Environmental And Safety Regulations
4.1.3. Opportunity
4.1.4. Impact Analysis
5. Industry Analysis
5.1. Porter's Five Force Analysis
5.2. Supply Chain Analysis
5.3. Pricing Analysis
5.4. Regulatory Analysis
5.5. Russia-Ukraine War Impact Analysis
5.6. DMI Opinion
6. COVID-19 Analysis
6.1. Analysis of COVID-19
6.1.1. Scenario Before COVID-19
6.1.2. Scenario During COVID-19
6.1.3. Scenario Post COVID-19
6.2. Pricing Dynamics Amid COVID-19
6.3. Demand-Supply Spectrum
6.4. Government Initiatives Related to the Market During Pandemic
6.5. Manufacturers Strategic Initiatives
6.6. Conclusion
7. By Voltage
7.1. Introduction
7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Voltage
7.1.2. Market Attractiveness Index, By Voltage
7.2. Low Voltage*
7.2.1. Introduction
7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
7.3. Medium Voltage
7.4. High Voltage
8. By Component
8.1. Introduction
8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
8.1.2. Market Attractiveness Index, By Component
8.2. Circuit Breaker*
8.2.1. Introduction
8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
8.3. Fuse
9. By Technology
9.1. Introduction
9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
9.1.2. Market Attractiveness Index, By Technology
9.2. Air Blast Circuit Breakers*
9.2.1. Introduction
9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
9.3. Vacuum Circuit Breakers
9.4. Oil Circuit Breaker
9.5. SF6 Circuit Breaker
9.6. Others
10. By Installation
10.1. Introduction
10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Installation
10.1.2. Market Attractiveness Index, By Installation
10.2. Indoor*
10.2.1. Introduction
10.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
10.3. Outdoor
11. By Rated Voltage
11.1. Introduction
11.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Rated Voltage
11.1.2. Market Attractiveness Index, By Rated Voltage
11.2. Upto 500V*
11.2.1. Introduction
11.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
11.3. 500V – 50kV
11.4. 50kV – 300kV
11.5. 300kV – 800kV
11.6. Above 800kV
12. By End-User
12.1. Introduction
12.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
12.1.2. Market Attractiveness Index, By End-User
12.2. Residential*
12.2.1. Introduction
12.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
12.3. Commercial
12.4. Industrial
12.5. Utility
12.6. Others
13. By Region
13.1. Introduction
13.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
13.1.2. Market Attractiveness Index, By Region
13.2. North America
13.2.1. Introduction
13.2.2. Key Region-Specific Dynamics
13.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Voltage
13.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
13.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
13.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Installation
13.2.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Rated Voltage
13.2.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
13.2.9. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
13.2.9.1. US
13.2.9.2. Canada
13.2.9.3. Mexico
13.3. Europe
13.3.1. Introduction
13.3.2. Key Region-Specific Dynamics
13.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Voltage
13.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
13.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
13.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Installation
13.3.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Rated Voltage
13.3.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
13.3.9. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
13.3.9.1. Germany
13.3.9.2. UK
13.3.9.3. France
13.3.9.4. Italy
13.3.9.5. Spain
13.3.9.6. Rest of Europe
13.4. South America
13.4.1. Introduction
13.4.2. Key Region-Specific Dynamics
13.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Voltage
13.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
13.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
13.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Installation
13.4.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Rated Voltage
13.4.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
13.4.9. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
13.4.9.1. Brazil
13.4.9.2. Argentina
13.4.9.3. Rest of South America
13.5. Asia-Pacific
13.5.1. Introduction
13.5.2. Key Region-Specific Dynamics
13.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Voltage
13.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
13.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
13.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Installation
13.5.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Rated Voltage
13.5.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
13.5.9. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
13.5.9.1. China
13.5.9.2. India
13.5.9.3. Japan
13.5.9.4. Australia
13.5.9.5. Rest of Asia-Pacific
13.6. Middle East and Africa
13.6.1. Introduction
13.6.2. Key Region-Specific Dynamics
13.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
13.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
13.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Installation
13.6.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Rated Voltage
13.6.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
14. Competitive Landscape
14.1. Competitive Scenario
14.2. Market Positioning/Share Analysis
14.3. Mergers and Acquisitions Analysis
15. Company Profiles
15.1. ABB Ltd.*
15.1.1. Company Overview
15.1.2. Product Portfolio and Description
15.1.3. Financial Overview
15.1.4. Key Developments
15.2. Bel Fuse Inc.
15.3. Schneider Electric SE
15.4. Mitsubishi Electric Corporation
15.5. Eaton Corporation plc
15.6. General Electric Company
15.7. Siemens AG
15.8. Rockwell Automation, Inc.
15.9. Larsen & Toubro Limited
15.10. NXP Semiconductors N.V.
15.11. SCHURTER Holding AG
LIST NOT EXHAUSTIVE
16. Appendix
16.1. About Us and Services
16.2. Contact Us
❖ 世界のサーキットブレーカ市場に関するよくある質問(FAQ) ❖
・サーキットブレーカの世界市場規模は?
→DataM Intelligence社は2023年のサーキットブレーカの世界市場規模を191億6,000万米ドルと推定しています。
・サーキットブレーカの世界市場予測は?
→DataM Intelligence社は2031年のサーキットブレーカの世界市場規模を296億8,000万米ドルと予測しています。
・サーキットブレーカ市場の成長率は?
→DataM Intelligence社はサーキットブレーカの世界市場が2024年~2031年に年平均5.6%成長すると予測しています。
・世界のサーキットブレーカ市場における主要企業は?
→DataM Intelligence社は「ABB Ltd., Bel Fuse Inc., Schneider Electric SE, Mitsubishi Electric Corporation, Eaton Corporation plc, General Electric Company, Siemens AG, Rockwell Automation, Inc., Larsen & Toubro Limited, NXP Semiconductors N.V., SCHURTER Holding AG.など ...」をグローバルサーキットブレーカ市場の主要企業として認識しています。
※上記FAQの市場規模、市場予測、成長率、主要企業に関する情報は本レポートの概要を作成した時点での情報であり、納品レポートの情報と少し異なる場合があります。