1. 方法論と範囲
1.1. 調査方法
1.2. 調査目的と調査範囲
2. 定義と概要
3. エグゼクティブ・サマリー
3.1. 製品別スニペット
3.2. アプリケーション別スニペット
3.3. エンドユーザー別スニペット
3.4. 地域別スニペット
4. ダイナミクス
4.1. 影響要因
4.1.1. 推進要因
4.1.1.1. 技術の進歩
4.1.1.2. XX
4.1.2. 阻害要因
4.1.2.1. 高い生産コスト
4.1.3. 機会
4.1.4. 影響分析
5. 産業分析
5.1. ポーターのファイブフォース分析
5.2. サプライチェーン分析
5.3. 価格分析
5.4. 規制分析
6. 製品別
6.1. 製品紹介
6.1.1. 市場規模分析と前年比成長率分析(%), 製品別
6.1.2. 市場魅力度指数(製品別
6.2. 足場ベース
6.2.1. 序論
6.2.2. 市場規模分析と前年比成長率分析(%)
6.2.3. ハイドロゲル
6.2.4. 高分子足場
6.2.5. マイクロパターン表面マイクロプレート
6.2.6. ナノファイバーベース足場
6.3. 足場フリー
6.3.1. ハンギング・ドロップ・マイクロプレート
6.3.2. ULAコーティングスフェロイドマイクロプレート
6.3.3. 磁気浮上
6.4. バイオリアクター
6.5. マイクロ流体
6.6. バイオプリンティング
7. 用途別
7.1. はじめに
7.1.1. 市場規模分析および前年比成長率分析(%), アプリケーション別
7.1.2. 市場魅力度指数:用途別
7.2. がん研究
7.2.1. はじめに
7.2.2. 市場規模分析と前年比成長率分析(%)
7.3. 幹細胞研究・組織工学
7.4. 創薬・毒性試験
7.5. その他
8. エンドユーザー別
8.1. はじめに
8.1.1. エンドユーザー別市場規模分析および前年比成長率分析(%)
8.1.2. 市場魅力度指数、エンドユーザー別
8.2. 製薬・バイオテクノロジー企業
8.2.1. はじめに
8.2.2. 市場規模分析と前年比成長率分析(%)
8.3. 学術・研究機関
8.4. 病院
8.5. その他
9. 地域別
9.1. はじめに
9.1.1. 地域別市場規模分析および前年比成長率分析(%)
9.1.2. 市場魅力度指数、地域別
9.2. 北米
9.2.1. 序論
9.2.2. 主な地域別ダイナミクス
9.2.3. 市場規模分析および前年比成長率分析(%), 製品別
9.2.4. 市場規模分析および前年比成長率分析(%), アプリケーション別
9.2.5. 市場規模分析および前年比成長率分析 (%)、エンドユーザー別
9.2.6. 市場規模分析および前年比成長率分析(%)、国別
9.2.6.1. 米国
9.2.6.2. カナダ
9.2.6.3. メキシコ
9.3. ヨーロッパ
9.3.1. はじめに
9.3.2. 主な地域別動向
9.3.3. 市場規模分析および前年比成長率分析(%), 製品別
9.3.4. 市場規模分析および前年比成長率分析(%), アプリケーション別
9.3.5. 市場規模分析および前年比成長率分析 (%)、エンドユーザー別
9.3.6. 市場規模分析および前年比成長率分析(%)、国別
9.3.6.1. ドイツ
9.3.6.2. イギリス
9.3.6.3. フランス
9.3.6.4. スペイン
9.3.6.5. イタリア
9.3.6.6. その他のヨーロッパ
9.4. 南米
9.4.1. はじめに
9.4.2. 地域別主要市場
9.4.3. 市場規模分析および前年比成長率分析(%), 製品別
9.4.4. 市場規模分析および前年比成長率分析 (%)、用途別
9.4.5. 市場規模分析および前年比成長率分析 (%)、エンドユーザー別
9.4.6. 市場規模分析および前年比成長率分析(%)、国別
9.4.6.1. ブラジル
9.4.6.2. アルゼンチン
9.4.6.3. その他の南米諸国
9.5. アジア太平洋
9.5.1. はじめに
9.5.2. 主な地域別ダイナミクス
9.5.3. 市場規模分析および前年比成長率分析(%), 製品別
9.5.4. 市場規模分析および前年比成長率分析(%), アプリケーション別
9.5.5. 市場規模分析および前年比成長率分析 (%)、エンドユーザー別
9.5.6. 市場規模分析および前年比成長率分析(%)、国別
9.5.6.1. 中国
9.5.6.2. インド
9.5.6.3. 日本
9.5.6.4. 韓国
9.5.6.5. その他のアジア太平洋地域
9.6. 中東・アフリカ
9.6.1. 序論
9.6.2. 主な地域別ダイナミクス
9.6.3. 市場規模分析および前年比成長率分析(%), 製品別
9.6.4. 市場規模分析および前年比成長率分析(%), アプリケーション別
9.6.5. 市場規模分析および前年比成長率分析(%), エンドユーザー別
10. 競合情勢
10.1. 競争シナリオ
10.2. 市場ポジショニング/シェア分析
10.3. M&A分析
11. 企業プロフィール
11.1. Corning Incorporated
11.1.1. 会社概要
11.1.2. 製品ポートフォリオと説明
11.1.3. 財務概要
11.1.4. 主な展開
11.2. Thermo Fisher Scientific, Inc.
11.3. Lonza.
11.4. Merck KGaA
11.5. Advanced BioMatrix
11.6. 3D Biotek LLC.
11.7. PromoCell GmbH
11.8. Avantor, Inc.
11.9. MIMETAS
11.10. CN Bio Innovations Ltd
リストは網羅的ではありません
12. 付録
12.1. 会社概要とサービス
12.2. お問い合わせ
The global 3D hydrogel culture market reached US$ 1.58 billion in 2023 and is expected to reach US$ 4.36 billion by 2031 growing with a CAGR of 13.5% during the forecast period 2024-2031.
3D hydrogel cell culture is an advanced method for cultivating cells within a three-dimensional (3D) hydrogel matrix that simulates the natural extracellular environment. Hydrogels are networks of cross-linked, hydrophilic polymers capable of absorbing significant amounts of water while retaining their structural integrity.
In this technique, cells are embedded within the hydrogel matrix, enabling them to interact with their surroundings in all three dimensions, akin to their behavior in living tissues. This setup offers a more physiologically relevant model than traditional two-dimensional (2D) cell cultures, as it more accurately reflects the intricate interactions between cells and their extracellular matrix (ECM) that occur in vivo.
The hydrogels used for 3D cell culture can be sourced from natural materials such as collagen, fibrin, and alginate, or they can be synthetic, like polyethylene glycol (PEG) and polyacrylamide. These hydrogels can be customized to replicate specific tissue characteristics by modifying their composition, stiffness, and porosity. This adaptability is crucial for various applications in research and medicine, including cancer studies, stem cell research, tissue engineering, and drug discovery.
Market Dynamics: Drivers
Technological advancements
The demand for the global 3D hydrogel culture market is driven by multiple factors. One of the primary factors is the technological advancements. Innovations in hydrogel formulations and their applications, particularly with the emergence of products like JellaGel Hydrogel, are playing a pivotal role in the expansion of the 3D hydrogel culture market. JellaGel, made from jellyfish collagen, provides researchers with a novel non-mammalian alternative that meets the growing demand for reliable and consistent materials in cell culture.
Moreover, key players in the industry more focus on R&D activities and product launches that would drive this 3D hydrogel culture market growth. For instance, in June 2024, researchers from the Department of Bioengineering (BE) at the Indian Institute of Science (IISc) developed an innovative 3D hydrogel culture system that closely replicates the mammalian lung environment.
Also, in June 2023, the launch of a new biocompatible hydrogel resin represents a pivotal moment in the field of bioprinting, marking the beginning of a new era characterized by enhanced capabilities in creating complex, high-resolution bio-structures. This innovative resin facilitates 2-photon polymerization (2PP), a cutting-edge 3D printing technology that allows for the precise fabrication of structures ranging from the micro- to mesoscale.
Restraints
Factors such as high production costs, limited availability of raw materials, and stringent regulatory requirements, are expected to hamper the market.
Segment Analysis
The global 3D hydrogel culture market is segmented based on product, application, end-user, and region.
The scaffold based segment accounted for approximately 52.1% of the global 3D hydrogel culture market share
The scaffold based segment is expected to hold the largest market share over the forecast period. Scaffold-based 3D hydrogel cell cultures utilize scaffolds to provide essential physical support for cells, enabling them to aggregate, proliferate, and migrate effectively. Traditionally, cells have been cultured on extracellular matrix (ECM) proteins in two-dimensional (2D) environments; however, this approach often fails to accurately replicate the complexities of the in vivo environment.
scaffold-based 3D hydrogel cultures allow cells to be embedded within a supportive matrix, which means that the characteristics of the scaffold material can significantly influence cellular behavior. Therefore, it is crucial to select the most appropriate scaffold for your specific application to ensure it aligns well with the requirements of drug screening and development processes.
Moreover, key player's strategies such as partnerships & collaborations, and research activities would drive this segment growth in the 3D hydrogel culture market. For instance, in April 2022, Cell Guidance Systems Ltd, a company specializing in the control, manipulation, and monitoring of cells both in vitro and in vivo, partnered with Manchester BIOGEL, a biotechnology firm focused on designing and manufacturing 3D synthetic peptide hydrogels, to introduce PODS-PeptiGels. This new kit integrates the advantages of two innovative cell culture technologies: synthetic peptide hydrogels (PeptiGels) and a selection of sustained-release growth factors (PODS). The collaboration aims to provide researchers with a reproducible and highly adaptable environment for 3D cell culture, enhancing experimental flexibility and reliability.
Similarly, in a research publication in Frontiers in May 2022, scaffold-based 3D hydrogel cultures, 3D bioprinting, and ECM-based bioinks present promising opportunities for replicating native tissue architectures, but several significant challenges persist. To fully realize the potential of this technology and enable its application in clinical environments, it is crucial to tackle these issues through dedicated research and interdisciplinary collaboration. This approach will help transform healthcare and enhance the quality of life for patients.
Geographical Analysis
North America accounted for approximately 44.6% of the global 3D hydrogel culture market share
North America region is expected to hold the largest market share over the forecast period owing to the growing prevalence of chronic diseases, including diabetes, cardiovascular conditions, and obesity, which has led to an increased demand for effective treatment solutions. Hydrogel-based products are being increasingly adopted for their therapeutic advantages in addressing these issues, especially in areas like wound care and drug delivery systems.
Moreover, in this region, a major number of key player's presence, well-advanced healthcare infrastructure, strong investment in research and development, favorable regulatory environment, and technological advancements help to propel this 3D hydrogel culture market growth. For instance, in December 2021, Inventia Life Science, an Australian specialist in 3D bioprinting, successfully closed a Series B funding round, raising $25 million (USD).
This funding was led by Blackbird Ventures and supported by long-time investor Skip Capital, bringing the company’s total funding to $32 million. With this new capital, Inventia Life Science plans to accelerate the rollout of its flagship product, the RASTRUM 3D bioprinter. A key focus of this expansion will be in the U.S. market, where Inventia sees significant potential. The company estimates that the biomedical research and drug discovery sector in the U.S. is worth over $40 billion, indicating a substantial opportunity for their technology.
Market Segmentation
By Product
• Scaffold Based
o Hydrogels
o Polymeric Scaffolds
o Micropatterned Surface Microplates
o Nanofiber Based Scaffolds
• Scaffold Free
o Hanging Drop Microplates
o Spheroid Microplates with ULA coating
o Magnetic Levitation
• Bioreactors
• Microfluidic
• Bioprinting
By Application
• Cancer Research
• Stem Cell Research & Tissue Engineering
• Drug Discovery & Toxicology Testing
• Others
By End-User
• Pharmaceutical & Biotechnology Companies
• Academic & Research Institutes
• Hospitals
• Others
By Region
• North America
o U.S.
o Canada
o Mexico
• Europe
o Germany
o U.K.
o France
o Spain
o Italy
o Rest of Europe
• South America
o Brazil
o Argentina
o The rest of South America
• Asia-Pacific
o China
o India
o Japan
o South Korea
o Rest of Asia-Pacific
• Middle East and Africa
Competitive Landscape
The major global 3D hydrogel culture market players include Corning Incorporated, Thermo Fisher Scientific, Inc., Lonza., Merck KGaA, Advanced BioMatrix, 3D Biotek LLC., PromoCell GmbH, Avantor, Inc., MIMETAS, and CN Bio Innovations Ltd, among others.
Key Developments
In May 2023, AMSBIO announced the launch of MatriMix, an innovative 3D culture substrate designed to advance cell biology and tissue engineering research. This innovative hydrogel is notable for its fully defined components, which include medical-grade collagens, laminin-511 E8 fragments, and hyaluronic acid.
In July 2022, Dolomite Bio launched new hydrogel-focused reagent kits designed to facilitate the high-throughput encapsulation of cells within hydrogel scaffolds. The two kits, named nadAROSE and nadi3D, specifically cater to researchers working on projects involving both agarose encapsulation and collagen-based hydrogels in the realm of 3D cell culture.
Why Purchase the Report?
• To visualize the global 3D hydrogel culture market segmentation based on product, application, end-user, and region and understand key commercial assets and players.
• Identify commercial opportunities by analyzing trends and co-development.
• Excel data sheet with numerous data points of the 3D hydrogel culture market with all segments.
• PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
• Product mapping is available in excel consisting of key products of all the major players.
The global 3D hydrogel culture market report would provide approximately 62 tables, 56 figures, and 182 pages.
Target Audience 2023
• Manufacturers/ Buyers
• Industry Investors/Investment Bankers
• Research Professionals
• Emerging Companies
1. Methodology and Scope
1.1. Research Methodology
1.2. Research Objective and Scope of the Report
2. Definition and Overview
3. Executive Summary
3.1. Snippet by Product
3.2. Snippet by Application
3.3. Snippet by End-User
3.4. Snippet by Region
4. Dynamics
4.1. Impacting Factors
4.1.1. Drivers
4.1.1.1. Technological Advancements
4.1.1.2. XX
4.1.2. Restraints
4.1.2.1. High Production Cost
4.1.3. Opportunity
4.1.4. Impact Analysis
5. Industry Analysis
5.1. Porter’s Five Force Analysis
5.2. Supply Chain Analysis
5.3. Pricing Analysis
5.4. Regulatory Analysis
6. By Product
6.1. Introduction
6.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
6.1.2. Market Attractiveness Index, By Product
6.2. Scaffold Based *
6.2.1. Introduction
6.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
6.2.3. Hydrogels
6.2.4. Polymeric Scaffolds
6.2.5. Micropatterned Surface Microplates
6.2.6. Nanofiber Based Scaffolds
6.3. Scaffold Free
6.3.1. Hanging Drop Microplates
6.3.2. Spheroid Microplates with ULA coating
6.3.3. Magnetic Levitation
6.4. Bioreactors
6.5. Microfluidic
6.6. Bioprinting
7. By Application
7.1. Introduction
7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
7.1.2. Market Attractiveness Index, By Application
7.2. Cancer Research*
7.2.1. Introduction
7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
7.3. Stem Cell Research & Tissue Engineering
7.4. Drug Discovery & Toxicology Testing
7.5. Others
8. By End-User
8.1. Introduction
8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
8.1.2. Market Attractiveness Index, By End-User
8.2. Pharmaceutical & Biotechnology Companies *
8.2.1. Introduction
8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
8.3. Academic & Research Institutes
8.4. Hospitals
8.5. Others
9. By Region
9.1. Introduction
9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
9.1.2. Market Attractiveness Index, By Region
9.2. North America
9.2.1. Introduction
9.2.2. Key Region-Specific Dynamics
9.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
9.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
9.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
9.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
9.2.6.1. U.S.
9.2.6.2. Canada
9.2.6.3. Mexico
9.3. Europe
9.3.1. Introduction
9.3.2. Key Region-Specific Dynamics
9.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
9.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
9.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
9.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
9.3.6.1. Germany
9.3.6.2. U.K.
9.3.6.3. France
9.3.6.4. Spain
9.3.6.5. Italy
9.3.6.6. Rest of Europe
9.4. South America
9.4.1. Introduction
9.4.2. Key Region-Specific Dynamics
9.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
9.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
9.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
9.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
9.4.6.1. Brazil
9.4.6.2. Argentina
9.4.6.3. Rest of South America
9.5. Asia-Pacific
9.5.1. Introduction
9.5.2. Key Region-Specific Dynamics
9.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
9.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
9.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
9.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
9.5.6.1. China
9.5.6.2. India
9.5.6.3. Japan
9.5.6.4. South Korea
9.5.6.5. Rest of Asia-Pacific
9.6. Middle East and Africa
9.6.1. Introduction
9.6.2. Key Region-Specific Dynamics
9.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
9.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
9.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
10. Competitive Landscape
10.1. Competitive Scenario
10.2. Market Positioning/Share Analysis
10.3. Mergers and Acquisitions Analysis
11. Company Profiles
11.1. Corning Incorporated *
11.1.1. Company Overview
11.1.2. Product Portfolio and Description
11.1.3. Financial Overview
11.1.4. Key Developments
11.2. Thermo Fisher Scientific, Inc.
11.3. Lonza.
11.4. Merck KGaA
11.5. Advanced BioMatrix
11.6. 3D Biotek LLC.
11.7. PromoCell GmbH
11.8. Avantor, Inc.
11.9. MIMETAS
11.10. CN Bio Innovations Ltd
LIST NOT EXHAUSTIVE
12. Appendix
12.1. About Us and Services
12.2. Contact Us
❖ 世界の3Dハイドロゲル培養市場に関するよくある質問(FAQ) ❖
・3Dハイドロゲル培養の世界市場規模は?
→DataM Intelligence社は2023年の3Dハイドロゲル培養の世界市場規模を15.8億米ドルと推定しています。
・3Dハイドロゲル培養の世界市場予測は?
→DataM Intelligence社は2031年の3Dハイドロゲル培養の世界市場規模を43.6億米ドルと予測しています。
・3Dハイドロゲル培養市場の成長率は?
→DataM Intelligence社は3Dハイドロゲル培養の世界市場が2024年~2031年に年平均13.5%成長すると予測しています。
・世界の3Dハイドロゲル培養市場における主要企業は?
→DataM Intelligence社は「Corning Incorporated、Thermo Fisher Scientific, Inc.、Lonza.、Merck KGaA、Advanced BioMatrix、3D Biotek LLC.、PromoCell GmbH、Avantor, Inc.、MIMETAS、CN Bio Innovations Ltd.など ...」をグローバル3Dハイドロゲル培養市場の主要企業として認識しています。
※上記FAQの市場規模、市場予測、成長率、主要企業に関する情報は本レポートの概要を作成した時点での情報であり、納品レポートの情報と少し異なる場合があります。