1 エグゼクティブ・サマリー
2 序文
2.1 概要
2.2 ステークホルダー
2.3 調査範囲
2.4 調査方法
2.4.1 データマイニング
2.4.2 データ分析
2.4.3 データの検証
2.4.4 リサーチアプローチ
2.5 リサーチソース
2.5.1 一次調査ソース
2.5.2 セカンダリーリサーチソース
2.5.3 前提条件
3 市場動向分析
3.1 はじめに
3.2 推進要因
3.3 抑制要因
3.4 機会
3.5 脅威
3.6 アプリケーション分析
3.7 エンドユーザー分析
3.8 新興市場
3.9 Covid-19の影響
4 ポーターズファイブフォース分析
4.1 供給者の交渉力
4.2 買い手の交渉力
4.3 代替品の脅威
4.4 新規参入の脅威
4.5 競争上のライバル関係
5 フォトニック集積回路の世界市場:集積種類別
5.1 はじめに
5.2 モノリシック集積
5.3 ハイブリッド集積
5.4 モジュール集積
6 フォトニック集積回路の世界市場:材料種類別
6.1 はじめに
6.2 シリコンベース
6.3 リン化インジウム(InP)ベース
6.4 ガリウムヒ素(GaAs)ベース
6.5 窒化シリコン(SiN)ベース
6.6 その他の材料タイプ
7 光集積回路の世界市場、部品別
7.1 はじめに
7.2 レーザー
7.3 変調器
7.4 検出器
7.5 導波路
7.6 光増幅器
7.7 フィルター&スプリッター
7.8 光スイッチ&カプラ
7.9 フォトニック集積回路
7.10 その他の部品
8 フォトニック集積回路の世界市場、用途別
8.1 はじめに
8.2 光通信ネットワーク
8.3 データセンター
8.4 バイオメディカルセンシングと環境センシング
8.5 光インターコネクト
8.6 信号ルーティングとスイッチング
8.7 ディスプレイと拡張現実(AR)/仮想現実(VR)
8.8 量子フォトニクス
8.9 その他のアプリケーション
9 フォトニック集積回路の世界市場:エンドユーザー別
9.1 はじめに
9.2 通信
9.3 ヘルスケア&ライフサイエンス
9.4 民生用電子機器
9.5 航空宇宙・防衛
9.6 産業・製造
9.7 自動車・運輸
9.8 その他のエンドユーザー
10 光集積回路の世界市場:地域別
10.1 はじめに
10.2 北アメリカ
10.2.1 アメリカ
10.2.2 カナダ
10.2.3 メキシコ
10.3 ヨーロッパ
10.3.1 ドイツ
10.3.2 イギリス
10.3.3 イタリア
10.3.4 フランス
10.3.5 スペイン
10.3.6 その他のヨーロッパ
10.4 アジア太平洋
10.4.1 日本
10.4.2 中国
10.4.3 インド
10.4.4 オーストラリア
10.4.5 ニュージーランド
10.4.6 韓国
10.4.7 その他のアジア太平洋地域
10.5 南アメリカ
10.5.1 アルゼンチン
10.5.2 ブラジル
10.5.3 チリ
10.5.4 その他の南アメリカ地域
10.6 中東/アフリカ
10.6.1 サウジアラビア
10.6.2 アラブ首長国連邦
10.6.3 カタール
10.6.4 南アフリカ
10.6.5 その他の中東/アフリカ地域
11 主要開発
11.1 契約、パートナーシップ、提携、合弁事業
11.2 買収と合併
11.3 新製品上市
11.4 事業拡大
11.5 その他の主要戦略
12 企業プロフィール
12.1 Agilent Technologies, Inc.
12.2 Aifotec AG
12.3 Alcatel-Lucent
12.4 Avago Technologies Finisar Corporation
12.5 Caliopa
12.6 Ciena Corporation
12.7 Cisco Systems Inc.
12.8 Colorchip Ltd
12.9 Effect Photonics
12.10 Emcore Corporation
12.11 Enablence Technologies Inc.
12.12 Hewlett Packard
12.13 II-VI Incorporated
12.14 Infinera Corporation
12.15 Intel Corporation
12.16 Lumentum Holdings
12.17 NeoPhotonics Corporation
12.18 POET Technologies
12.19 Source Photonics Inc.
表一覧
表1 フォトニック集積回路の世界市場展望、地域別(2022-2030年) ($MN)
表2 フォトニック集積回路の世界市場展望、集積種類別(2022-2030年) ($MN)
表3 フォトニック集積回路の世界市場展望:モノリシック集積種類別 (2022-2030) ($MN)
表4 フォトニック集積回路の世界市場展望、ハイブリッド集積種類別 (2022-2030) ($MN)
表5 フォトニック集積回路の世界市場展望、モジュール集積化別 (2022-2030) ($MN)
表6 フォトニック集積回路の世界市場展望、材料種類別 (2022-2030) ($MN)
表7 フォトニック集積回路の世界市場展望:シリコンベース別 (2022-2030) ($MN)
表8 フォトニック集積回路の世界市場展望:リン化インジウム(InP)ベース別 (2022-2030) ($MN)
表9 フォトニック集積回路の世界市場展望、ガリウムヒ素(GaAs)ベース別 (2022-2030) ($MN)
表10 フォトニック集積回路の世界市場展望、窒化シリコン(SiN)ベース別 (2022-2030) ($MN)
表11 フォトニック集積回路の世界市場展望、その他の材料種類別 (2022-2030) ($MN)
表12 フォトニック集積回路の世界市場展望、コンポーネント別 (2022-2030) ($MN)
表13 フォトニック集積回路の世界市場展望、レーザー別 (2022-2030) ($MN)
表14 フォトニック集積回路の世界市場展望、変調器別 (2022-2030) ($MN)
表15 フォトニック集積回路の世界市場展望、検出器別 (2022-2030) ($MN)
表16 フォトニック集積回路の世界市場展望、導波路別 (2022-2030) ($MN)
表17 フォトニック集積回路の世界市場展望、光増幅器別 (2022-2030) ($MN)
表18 フォトニック集積回路の世界市場展望、フィルタ・スプリッタ別 (2022-2030) ($MN)
表19 フォトニック集積回路の世界市場展望、光スイッチ・カプラ別 (2022-2030) ($MN)
表20 フォトニック集積回路の世界市場展望、集積フォトニック回路別 (2022-2030) ($MN)
表21 フォトニック集積回路の世界市場展望、その他のコンポーネント別 (2022-2030) ($MN)
表22 フォトニック集積回路の世界市場展望:用途別 (2022-2030) ($MN)
表23 フォトニック集積回路の世界市場展望:光通信ネットワーク別 (2022-2030) ($MN)
表24 フォトニック集積回路の世界市場展望、データセンター別 (2022-2030) ($MN)
表25 フォトニック集積回路の世界市場展望:バイオメディカルセンシング・環境センシング別 (2022-2030) ($MN)
表26 フォトニック集積回路の世界市場展望、光インターコネクト別 (2022-2030) ($MN)
表27 フォトニック集積回路の世界市場展望、信号ルーティングとスイッチング別 (2022-2030) ($MN)
表28 フォトニック集積回路の世界市場展望、ディスプレイと拡張現実(AR)/仮想現実(VR)別 (2022-2030) ($MN)
表29 フォトニック集積回路の世界市場展望、量子フォトニクス別 (2022-2030) ($MN)
表30 フォトニック集積回路の世界市場展望、その他の用途別 (2022-2030) ($MN)
表31 フォトニック集積回路の世界市場展望:エンドユーザー別 (2022-2030) ($MN)
表32 フォトニック集積回路の世界市場展望:通信別 (2022-2030) ($MN)
表33 フォトニック集積回路の世界市場展望:ヘルスケア・ライフサイエンス別 (2022-2030) ($MN)
表34 フォトニック集積回路の世界市場展望:民生用電子機器別 (2022-2030) ($MN)
表35 フォトニック集積回路の世界市場展望、航空宇宙・防衛別 (2022-2030) ($MN)
表36 フォトニック集積回路の世界市場展望:産業・製造業別 (2022-2030) ($MN)
表37 フォトニック集積回路の世界市場展望:自動車・運輸別 (2022-2030) ($MN)
表38 フォトニック集積回路の世界市場展望:その他のエンドユーザー別 (2022-2030) ($MN)
注)北アメリカ、ヨーロッパ、APAC、南アメリカ、中東/アフリカ地域の表も上記と同様に表記しています。
Market Dynamics:
Driver:
Increasing demand for high-speed data transmission
Telecommunications networks globally strive to meet escalating bandwidth requirements driven by streaming services, cloud computing, IoT connectivity, and 5G networks, PICs offer critical advantages. These integrated circuits enable faster data transmission rates over optical fibers compared to traditional electronic counterparts, supporting higher capacities and lower latency. They are pivotal in expanding the capabilities of optical communication systems, enabling providers to deliver faster, more reliable connectivity solutions to meet consumer and enterprise demands.
Restraint:
Complexity of integration
Radar systems often require integration of diverse components such as signal processors, antennas, data fusion algorithms, and power management systems. This complexity increases design complexity, development time, and manufacturing costs. Moreover, integrating new technologies into existing radar systems can lead to compatibility issues and require extensive testing and validation processes to ensure performance and reliability. These challenges can delay deployment schedules and increase overall project costs, making it harder for manufacturers to meet customer expectations and budget constraints.
Opportunity:
Growth of telecommunications and data centers
The expansion of telecommunications infrastructure, including fiber-optic networks and wireless communication technologies, drives demand for radar systems to protect these critical facilities from potential threats such as intrusion or sabotage. Short Range Air Surveillance Radars provide real-time monitoring capabilities that enhance security and situational awareness around these high-value assets. This expansion can lead to greater demands for border surveillance, airspace monitoring, and perimeter security, all of which are areas where Short Range Air Surveillance Radars are essential.
Threat:
Lack of standardization
Standardized protocols and specifications, there can be inconsistencies in radar performance, interoperability issues between different radar systems, and difficulties in integrating radar systems with other defense and security technologies. Further lack of standardization also affects procurement processes, as different standards or lack thereof can lead to confusion and delays in decision-making for buyers and government agencies. This can impact project timelines and increase costs associated with customization and integration efforts.
Covid-19 Impact:
Heightened security concerns and the need for resilient defense and surveillance systems spurred recovery. Investments in border security, critical infrastructure protection, and defense modernization accelerated as governments prioritized national security amidst evolving threats. As economies stabilized, the market rebounded with renewed focus on enhancing radar capabilities for enhanced situational awareness and operational efficiency in defense and security applications.
The hybrid integration segment is expected to be the largest during the forecast period
The hybrid integration is expected to be the largest during the forecast period because hybrid integration in the Short Range Air Surveillance Radar market combines the strengths of different technologies and subsystems, such as radar systems with complementary sensors or data processing capabilities. This approach enhances radar performance by leveraging the specific advantages of each component, such as radar for long-range detection combined with infrared or acoustic sensors for precise target identification and tracking.
The optical amplifiers segment is expected to have the highest CAGR during the forecast period
The optical amplifiers segment is expected to have the highest CAGR during the forecast period as these devices amplify optical signals without converting them into electrical signals, enabling longer transmission distances and higher signal integrity in fiber-optic communication links used in radar systems. In radar applications, optical amplifiers increase the sensitivity and range of detection, improving the radar's ability to detect smaller targets or signals over greater distances. This capability is crucial for enhancing situational awareness and operational effectiveness in surveillance, defense, and security applications boosting the market.
Region with largest share:
North America is projected to hold the largest market share during the forecast period as it encompasses the sector focused on radar systems designed for detecting and tracking airborne objects within relatively short distances. These radar systems are crucial for applications such as military defense, border security, airport operations, and critical infrastructure protection. Moreover key drivers of this market include ongoing advancements in radar technology, increasing investments in defense and security, and the need for enhanced situational awareness in urban and remote environments.
Region with highest CAGR:
Asia Pacific is projected to hold the highest CAGR over the forecast period owing to factors such as government defense budgets, regulatory requirements, technological innovation, and geopolitical developments. Companies in North America specializing in Short Range Air Surveillance Radars continuously innovate to offer solutions that meet evolving customer demands for improved performance, integration capabilities, and operational efficiency in defense and security applications.
Key players in the market
Some of the key players in Photonic Integrated Circuits market include Agilent Technologies, Inc., Aifotec AG, Alcatel-Lucent, Avago Technologies Finisar Corporation, Caliopa, Ciena Corporation, Cisco Systems Inc., Colorchip Ltd, Effect Photonics, Emcore Corporation, Enablence Technologies Inc., Hewlett Packard, II-VI Incorporated, Infinera Corporation, Intel Corporation, Lumentum Holdings, NeoPhotonics Corporation, POET Technologies and Source Photonics Inc.
Key Developments:
In July 2024, Cisco and HTX sign MOU to Pilot 5G and AI technologies to enhance Homeland Security. Both parties will collaborate in the research and development of 5G and AI technologies to digitally transform public safety, security and network operations in Singapore.
In June 2024, Agilent Announces Cutting-Edge Advances in GC/MS and LC/Q-TOF Technology at ASMS 2024. These instruments exemplify Agilent’s unwavering commitment to advancing scientific discovery through innovative instrumentation, significantly shaping the landscape of mass spectrometry.
In June 2024, Cisco launches country digital transformation program in vietnam to supercharge its economic growth. The program will see investments in key areas like 5G, smart manufacturing, financial services and digital government.
Integration Types Covered:
• Monolithic Integration
• Hybrid Integration
• Module Integration
Material Types Covered:
• Silicon-based
• Indium Phosphide (InP)-based
• Gallium Arsenide (GaAs)-based
• Silicon Nitride (SiN)-based
• Other Material Types
Components Covered:
• Lasers
• Modulators
• Detectors
• Waveguides
• Optical Amplifiers
• Filters & Splitters
• Optical Switches & Coupler
• Integrated Photonic Circuits
• Other Components
Applications Covered:
• Optical Communication Networks
• Data Centers
• Biomedical Sensing & Environmental Sensing
• Optical Interconnects
• Signal Routing & Switching
• Displays and Augmented Reality (AR)/Virtual Reality (VR)
• Quantum Photonics
• Other Applications
End Users Covered:
• Telecommunications
• Healthcare & Life Sciences
• Consumer Electronics
• Aerospace & Defense
• Industrial & Manufacturing
• Automotive & Transportation
• Other End Users
Regions Covered:
• North America
US
Canada
Mexico
• Europe
Germany
UK
Italy
France
Spain
Rest of Europe
• Asia Pacific
Japan
China
India
Australia
New Zealand
South Korea
Rest of Asia Pacific
• South America
Argentina
Brazil
Chile
Rest of South America
• Middle East & Africa
Saudi Arabia
UAE
Qatar
South Africa
Rest of Middle East & Africa
What our report offers:
- Market share assessments for the regional and country-level segments
- Strategic recommendations for the new entrants
- Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
- Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
- Strategic recommendations in key business segments based on the market estimations
- Competitive landscaping mapping the key common trends
- Company profiling with detailed strategies, financials, and recent developments
- Supply chain trends mapping the latest technological advancements
1 Executive Summary
2 Preface
2.1 Abstract
2.2 Stake Holders
2.3 Research Scope
2.4 Research Methodology
2.4.1 Data Mining
2.4.2 Data Analysis
2.4.3 Data Validation
2.4.4 Research Approach
2.5 Research Sources
2.5.1 Primary Research Sources
2.5.2 Secondary Research Sources
2.5.3 Assumptions
3 Market Trend Analysis
3.1 Introduction
3.2 Drivers
3.3 Restraints
3.4 Opportunities
3.5 Threats
3.6 Application Analysis
3.7 End User Analysis
3.8 Emerging Markets
3.9 Impact of Covid-19
4 Porters Five Force Analysis
4.1 Bargaining power of suppliers
4.2 Bargaining power of buyers
4.3 Threat of substitutes
4.4 Threat of new entrants
4.5 Competitive rivalry
5 Global Photonic Integrated Circuits Market, By Integration Type
5.1 Introduction
5.2 Monolithic Integration
5.3 Hybrid Integration
5.4 Module Integration
6 Global Photonic Integrated Circuits Market, By Material Type
6.1 Introduction
6.2 Silicon-based
6.3 Indium Phosphide (InP)-based
6.4 Gallium Arsenide (GaAs)-based
6.5 Silicon Nitride (SiN)-based
6.6 Other Material Types
7 Global Photonic Integrated Circuits Market, By Component
7.1 Introduction
7.2 Lasers
7.3 Modulators
7.4 Detectors
7.5 Waveguides
7.6 Optical Amplifiers
7.7 Filters & Splitters
7.8 Optical Switches & Coupler
7.9 Integrated Photonic Circuits
7.10 Other Components
8 Global Photonic Integrated Circuits Market, By Application
8.1 Introduction
8.2 Optical Communication Networks
8.3 Data Centers
8.4 Biomedical Sensing & Environmental Sensing
8.5 Optical Interconnects
8.6 Signal Routing & Switching
8.7 Displays and Augmented Reality (AR)/Virtual Reality (VR)
8.8 Quantum Photonics
8.9 Other Applications
9 Global Photonic Integrated Circuits Market, By End User
9.1 Introduction
9.2 Telecommunications
9.3 Healthcare & Life Sciences
9.4 Consumer Electronics
9.5 Aerospace & Defense
9.6 Industrial & Manufacturing
9.7 Automotive & Transportation
9.8 Other End Users
10 Global Photonic Integrated Circuits Market, By Geography
10.1 Introduction
10.2 North America
10.2.1 US
10.2.2 Canada
10.2.3 Mexico
10.3 Europe
10.3.1 Germany
10.3.2 UK
10.3.3 Italy
10.3.4 France
10.3.5 Spain
10.3.6 Rest of Europe
10.4 Asia Pacific
10.4.1 Japan
10.4.2 China
10.4.3 India
10.4.4 Australia
10.4.5 New Zealand
10.4.6 South Korea
10.4.7 Rest of Asia Pacific
10.5 South America
10.5.1 Argentina
10.5.2 Brazil
10.5.3 Chile
10.5.4 Rest of South America
10.6 Middle East & Africa
10.6.1 Saudi Arabia
10.6.2 UAE
10.6.3 Qatar
10.6.4 South Africa
10.6.5 Rest of Middle East & Africa
11 Key Developments
11.1 Agreements, Partnerships, Collaborations and Joint Ventures
11.2 Acquisitions & Mergers
11.3 New Product Launch
11.4 Expansions
11.5 Other Key Strategies
12 Company Profiling
12.1 Agilent Technologies, Inc.
12.2 Aifotec AG
12.3 Alcatel-Lucent
12.4 Avago Technologies Finisar Corporation
12.5 Caliopa
12.6 Ciena Corporation
12.7 Cisco Systems Inc.
12.8 Colorchip Ltd
12.9 Effect Photonics
12.10 Emcore Corporation
12.11 Enablence Technologies Inc.
12.12 Hewlett Packard
12.13 II-VI Incorporated
12.14 Infinera Corporation
12.15 Intel Corporation
12.16 Lumentum Holdings
12.17 NeoPhotonics Corporation
12.18 POET Technologies
12.19 Source Photonics Inc.
List of Tables
Table 1 Global Photonic Integrated Circuits Market Outlook, By Region (2022-2030) ($MN)
Table 2 Global Photonic Integrated Circuits Market Outlook, By Integration Type (2022-2030) ($MN)
Table 3 Global Photonic Integrated Circuits Market Outlook, By Monolithic Integration (2022-2030) ($MN)
Table 4 Global Photonic Integrated Circuits Market Outlook, By Hybrid Integration (2022-2030) ($MN)
Table 5 Global Photonic Integrated Circuits Market Outlook, By Module Integration (2022-2030) ($MN)
Table 6 Global Photonic Integrated Circuits Market Outlook, By Material Type (2022-2030) ($MN)
Table 7 Global Photonic Integrated Circuits Market Outlook, By Silicon-based (2022-2030) ($MN)
Table 8 Global Photonic Integrated Circuits Market Outlook, By Indium Phosphide (InP)-based (2022-2030) ($MN)
Table 9 Global Photonic Integrated Circuits Market Outlook, By Gallium Arsenide (GaAs)-bas (2022-2030) ($MN)
Table 10 Global Photonic Integrated Circuits Market Outlook, By Silicon Nitride (SiN)-based (2022-2030) ($MN)
Table 11 Global Photonic Integrated Circuits Market Outlook, By Other Material Types (2022-2030) ($MN)
Table 12 Global Photonic Integrated Circuits Market Outlook, By Component (2022-2030) ($MN)
Table 13 Global Photonic Integrated Circuits Market Outlook, By Lasers (2022-2030) ($MN)
Table 14 Global Photonic Integrated Circuits Market Outlook, By Modulators (2022-2030) ($MN)
Table 15 Global Photonic Integrated Circuits Market Outlook, By Detectors (2022-2030) ($MN)
Table 16 Global Photonic Integrated Circuits Market Outlook, By Waveguides (2022-2030) ($MN)
Table 17 Global Photonic Integrated Circuits Market Outlook, By Optical Amplifiers (2022-2030) ($MN)
Table 18 Global Photonic Integrated Circuits Market Outlook, By Filters & Splitters (2022-2030) ($MN)
Table 19 Global Photonic Integrated Circuits Market Outlook, By Optical Switches & Coupler (2022-2030) ($MN)
Table 20 Global Photonic Integrated Circuits Market Outlook, By Integrated Photonic Circuits (2022-2030) ($MN)
Table 21 Global Photonic Integrated Circuits Market Outlook, By Other Components (2022-2030) ($MN)
Table 22 Global Photonic Integrated Circuits Market Outlook, By Application (2022-2030) ($MN)
Table 23 Global Photonic Integrated Circuits Market Outlook, By Optical Communication Networks (2022-2030) ($MN)
Table 24 Global Photonic Integrated Circuits Market Outlook, By Data Centers (2022-2030) ($MN)
Table 25 Global Photonic Integrated Circuits Market Outlook, By Biomedical Sensing & Environmental Sensing (2022-2030) ($MN)
Table 26 Global Photonic Integrated Circuits Market Outlook, By Optical Interconnects (2022-2030) ($MN)
Table 27 Global Photonic Integrated Circuits Market Outlook, By Signal Routing & Switching (2022-2030) ($MN)
Table 28 Global Photonic Integrated Circuits Market Outlook, By Displays and Augmented Reality (AR)/Virtual Reality (VR) (2022-2030) ($MN)
Table 29 Global Photonic Integrated Circuits Market Outlook, By Quantum Photonics (2022-2030) ($MN)
Table 30 Global Photonic Integrated Circuits Market Outlook, By Other Applications (2022-2030) ($MN)
Table 31 Global Photonic Integrated Circuits Market Outlook, By End User (2022-2030) ($MN)
Table 32 Global Photonic Integrated Circuits Market Outlook, By Telecommunications (2022-2030) ($MN)
Table 33 Global Photonic Integrated Circuits Market Outlook, By Healthcare & Life Sciences (2022-2030) ($MN)
Table 34 Global Photonic Integrated Circuits Market Outlook, By Consumer Electronics (2022-2030) ($MN)
Table 35 Global Photonic Integrated Circuits Market Outlook, By Aerospace & Defense (2022-2030) ($MN)
Table 36 Global Photonic Integrated Circuits Market Outlook, By Industrial & Manufacturing (2022-2030) ($MN)
Table 37 Global Photonic Integrated Circuits Market Outlook, By Automotive & Transportation (2022-2030) ($MN)
Table 38 Global Photonic Integrated Circuits Market Outlook, By Other End Users (2022-2030) ($MN)
Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.