希土類元素(レアアース)のグローバル市場(2024~2032):磁石、ニッケル水素電池、自動車触媒、ディーゼルエンジン、その他

【英語タイトル】Rare Earth Elements Market Report by Application (Magnets, NiMH Batteries, Auto Catalysts, Diesel Engines, Fluid Cracking Catalyst, Phosphers, Glass, Polishing Powders, and Others), and Region 2024-2032

IMARCが出版した調査資料(IMARC24MAR0128)・商品コード:IMARC24MAR0128
・発行会社(調査会社):IMARC
・発行日:2024年1月
・ページ数:145
・レポート言語:英語
・レポート形式:PDF
・納品方法:Eメール
・調査対象地域:グローバル
・産業分野:化学・材料
◆販売価格オプション(消費税別)
Single User(1名様閲覧用)USD2,999 ⇒換算¥455,848見積依頼/購入/質問フォーム
Five User(5名様閲覧用)USD3,999 ⇒換算¥607,848見積依頼/購入/質問フォーム
Enterprisewide(閲覧人数無制限)USD4,999 ⇒換算¥759,848見積依頼/購入/質問フォーム
販売価格オプションの説明
※お支払金額:換算金額(日本円)+消費税
※納期:即日〜2営業日(3日以上かかる場合は別途表記又はご連絡)
※お支払方法:納品日+5日以内に請求書を発行・送付(請求書発行日より2ヶ月以内に銀行振込、振込先:三菱UFJ銀行/H&Iグローバルリサーチ株式会社、支払期限と方法は調整可能)
❖ レポートの概要 ❖

世界の希土類元素(レアアース)市場規模は、2023年に110億米ドルに達しました。今後、IMARC Groupは、市場が2032年までに343億米ドルに達し、2024年から2032年の間に13.1%の成長率(CAGR)を示すと予測しています。さまざまな分野での希土類元素(レアアース)の有用性に対する認識の高まり、さまざまな産業用途、家電製品の広範な採用、持続可能でクリーンなエネルギーソリューションへのシフトが、市場を推進している主な要因の一部です。

希土類元素(レアアース)は、15種のランタノイドにスカンジウムとイットリウムを加えた17種の化学元素からなるグループです。その名前とは裏腹に、ほとんどの希土類元素は地殻中で特に希少というわけではないです。希少」なのは、採掘や精製が難しいからです。これらの元素は、ユニークな磁気特性、触媒特性、発光特性で知られており、さまざまなハイテク用途で重要な役割を担っています。スマートフォンや家電製品から再生可能エネルギー・システムや高度な軍事技術に至るまで、幅広い製品に不可欠な構成要素となっています。

コンシューマーエレクトロニクス、自動車、再生可能エネルギーなど、さまざまな産業における大幅な技術革新が、世界中の希土類元素市場の成長を促進する重要な要因の1つとなっています。希土類元素は、電池、磁石、電子ディスプレイなどの部品を製造する上で極めて重要であり、その需要は技術の進歩とともに高まっています。これらの元素は、レーダーシステム、ジェットエンジン、ミサイル誘導システムに使用される高性能材料の製造に不可欠であるため、市場は防衛用途での役割によっても牽引されています。グリーンエネルギーの重視の高まりも、主要な成長促進要因として作用しています。レアアース元素は、風力タービンや電気自動車の生産に不可欠であり、二酸化炭素排出量を削減するという世界的な持続可能性の目標に合致しています。さらに、多くのレアアース供給が特定の地域に集中しているため、サプライチェーンに潜在的なボトルネックが発生しており、地政学と貿易関係が市場に大きな影響を与えています。さらに、レアアースを使用する技術への補助金や戦略的備蓄を含む政府の政策が、世界中の市場に前向きな見通しを生み出しています。

希土類元素(レアアース)市場の動向/推進要因:
大幅な技術進歩
レアアース需要の最も強力な原動力の1つは、技術革新の絶え間ないペースです。これらの元素は、数多くのハイテク用途に不可欠です。例えば、風力タービンに使用される強力な磁石にはネオジムが必要であり、ハイブリッド車や電気自動車のバッテリーにはランタンが使用されることが多いです。これに加えて、スマートフォン、タブレット端末、ノートパソコンなど、多くの電子機器には、より小型で効率的な部品を実現するレアアース(希土類元素)が使用されています。これらの技術が進化を続け、採用率が上昇するにつれて、レアアースに対する需要が高まっており、市場価値をさらに押し上げています。

グリーンエネルギーへの取り組みの高まり

環境の持続可能性は、世界中の政府や組織にとって焦点となりつつあり、クリーンエネルギー技術への需要を刺激しています。レアアース(希土類元素)は、この分野で重要な役割を果たしています。ネオジムやジスプロシウムなどの元素は、風力タービンの機能に不可欠な永久磁石の生産に使用されます。同様に、輸送部門の電化の推進も、電池や電気モーターに使用されるレアアース元素の需要を押し上げています。各国が野心的な気候目標を達成し、再生可能エネルギー源への移行に努める中、これらの元素の市場は活気を帯びています。

防衛用途の増加
防衛用途における希土類元素の需要は、市場の成長に大きく貢献しています。これらの元素は、さまざまな高度な軍事技術に不可欠です。たとえば、レアアースは精密誘導弾、レーダーシステム、航空電子工学の製造に不可欠なコンポーネントです。また、暗視ゴーグルやその他の光学機器用の特殊ガラスの製造にも使用されています。地政学的な緊張が高まり、各国が防衛能力の近代化にさらに投資するようになると、レアアースの必要性が高まります。高性能材料への軍事的依存は、これらの元素を戦略的優先事項とし、しばしば備蓄や長期調達契約につながります。

希土類元素の産業区分:
IMARC Groupは、世界の希土類元素市場レポートの各セグメントにおける主要動向の分析と、2024年から2032年までの世界および地域レベルの予測を提供しています。当レポートでは、市場を用途別に分類しています。

用途別
磁石
ニッケル水素電池
自動車触媒
ディーゼルエンジン
流動クラッキング触媒
ホスファ
ガラス
研磨パウダー
その他

磁石が市場を独占
用途に基づく市場の詳細な分類と分析も報告書に記載されています。これには、磁石、ニッケル水素電池、自動車触媒、ディーゼルエンジン、流動分解触媒、ホスファ、ガラス、研磨パウダー、その他が含まれます。報告書によると、磁石が最大の市場シェアを占めています。

希土類元素、特にネオジム、ジスプロシウム、サマリウムは、高性能磁石の開発に重要な役割を果たしています。これらは普通の磁石ではなく、従来のフェライト磁石やアルニコ磁石と比べて優れた磁気特性を備えています。ネオジム磁石は、温度安定性を向上させるために少量のジスプロシウムと組み合わされることが多く、強力でコンパクトな磁石を必要とするさまざまな用途で広く使用されています。再生可能エネルギー分野では、風力タービン発電機に欠かせない部品となっています。その高い磁力は、より効率的なエネルギー変換を可能にし、電気出力を最大化します。自動車産業では、電気自動車やハイブリッド車のモーターに使用され、出力と効率の向上に貢献しています。これらの磁石は、ヘッドフォン、スマートフォン、ハードディスク・ドライブなどの家電製品にも普及しており、小型で高い磁力が特に役立っています。さらに、MRI装置のような、強力な磁場によって撮像する医療技術にも欠かせないです。

地域別
中国
日本・北東アジア
米国

中国が最大の市場セグメント
同レポートは、中国、日本・北東アジア、米国を含むすべての主要地域市場についても包括的な分析を行っています。報告書によると、中国が最大の市場シェアを占めています。

希土類元素の世界供給の大部分を占める中国では、いくつかの要因が国内外を問わず市場を牽引しています。中国は、レアアースに大きく依存する電子機器製造部門が急成長しています。コンシューマーエレクトロニクスの世界的なハブとして、これらの元素の内需は高いです。中国政府は、レアアース産業を規制・促進するための戦略的政策を実施しています。これには、輸出割当、戦略的備蓄、国内生産を奨励するための補助金などが含まれます。中国は、レアアースのサプライチェーンにおいて圧倒的な地位を占めているため、世界の価格と供給力に影響を与えることができます。これが好循環を生み、国内の採掘・加工施設へのさらなる投資を引き寄せています。中国は、レアアースを必要とする風力タービンや電気自動車などの再生可能エネルギー技術に多額の投資を行っています。これは、同国の野心的な環境目標と一致しています。研究と技術への投資は、レアアースの抽出と加工をより効率的で環境的に持続可能なものにすることを目的としており、中国の競争力を維持しています。

競争環境:
希土類元素(レアアース)市場では、主要プレーヤーがその地位を強化し、需要の増加に対応するために、さまざまな戦略的取り組みを行っています。これには、抽出技術を強化し、精製プロセスの効率を向上させるための研究開発への投資が含まれます。各社はまた、他の鉱山会社や化学会社だけでなく、テクノロジー企業、防衛請負業者、再生可能エネルギー・プロバイダーなどのエンドユーザーとの提携や協力関係も模索しています。大手企業の中には、特にレアアースを取り巻く地政学的センシティビティを考慮して、安定したサプライチェーンを確保するために政府と緊密に連携しているところもあります。企業と国家の両方が供給リスクの軽減を目指しているため、戦略的備蓄と長期契約が一般的になってきています。さらに、市場リーダーは、技術導入と産業成長により需要が高まっている新興市場を開拓するため、地理的な足跡を拡大しています。供給源の多様化もまた、特定地域への依存を減らすことを目的とした重要な戦略です。

本レポートでは、市場の競争環境について包括的な分析を行っています。主要企業の詳細なプロフィールも掲載しています。市場の主要企業には以下のようなものがあります:

Lynas Corporation Ltd.
Arafura Resources Limited
Great Western Minerals Group Ltd.
Avalon Advanced Materials Inc.
Greenland Minerals Ltd
Alkane Resources Ltd
Neo Performance Materials
Iluka Resource Limited
IREL (India) Limited
Canada Rare Earths Corporation

最近の動向
2023年4月、ハイデラバードに拠点を置く国立地球物理学研究所は、アンドラ・プラデシュ州のアナンタプール市で15種類のレアアース(希土類元素)の大鉱床を発見した。レアアースは、多くの電子機器や、医療技術、航空宇宙、防衛を含むさまざまな産業用途の重要な構成要素です。
2021年12月、China Rare Earth Group Co. Ltd.は、中国の国有資産監督当局が直接監督する国有企業(SOE)であり、中国東部の江西省甘州市に正式に設立された。新たに発足したレアアース・メガSOEは、レアアース業界を支配する「ビッグ6」SOEのうち3社(中国アルミニウム集団(CHALCO)、中国金属集団公司、甘州希土集団有限公司)のレアアース部門と、2つの研究会社(中国鉄鋼研究院集団とGrinm Group Corporation Ltd.)を含む、いくつかのトップ産業メーカーのコングロマリットです。
日本は2022年12月、東京の南東約1,900kmの太平洋に浮かぶサンゴ環礁、南鳥島沖の深海底の泥から、2024年に電気自動車やハイブリッド車向けにレアアースの採掘を開始します。日本は、レアアース(希土類金属)の中国への依存度を下げることを目指しています。

本レポートで扱う主な質問
1. 2023年の希土類元素の世界市場規模は?
2. 2024~2032年の世界の希土類元素市場の予想成長率は?
3. COVID-19が世界の希土類元素市場に与えた影響は?
4. 希土類元素の世界市場を牽引する主要因は何か?
5. 希土類元素の世界市場の用途別は?
6. 希土類元素の世界市場における主要地域は?
7. 希土類元素の世界市場における主要プレーヤー/企業は?

1 序論
2 調査範囲と方法論
2.1 調査の目的
2.2 ステークホルダー
2.3 データソース
2.3.1 一次情報源
2.3.2 二次情報源
2.4 市場推定
2.4.1 ボトムアップ・アプローチ
2.4.2 トップダウンアプローチ
2.5 予測方法
3 エグゼクティブサマリー
4 希土類元素(レアアース)とは何か?
ー5 希土類元素。ー ー希少元素はー本当にー
ー 5.1 埋蔵量予測
5.2 レアアースの寿命は?
6 希土類元素(レアアース): ー鉱山経済学
ー 6.1 鉱山のーク評価:
6.2 新規プロジェクトの開発: ー数年かかることもー
6.3 レアアースの採掘コスト:
ー 6.4 インフラ・資本コスト
6.5 運転コスト
6.6 主要プロジェクト
6.6.1 アラフラ・リソーシズ社-ノーランド・プロジェクト
6.6.2 ネカラチョ希土類元素プロジェクト
6.6.3 Kvanefjeld プロジェクト-Greenland Minerals & Energy Limited
6.6.4 ダボ・ジルコニア-アルカン・リソーシズ社
6.7 採掘と加工
6.7.1 採掘
6.7.2 下流加工
6.8 価格
6.8.1 希土類元素価格に影響を与える要因
6.8.2 過去の価格
6.8.3 価格予測
7 希土類元素(レアアース)世界市場における中国の役割
7.1 中国はレアアースを独占している
7.2 中国の採掘コストは他のレアアース生産国よりかなり低い
7.3 採掘業者は適切な作業基準と環境規制の欠如から利益を得てきた
7.4 中国は他のレアアース生産国に比べ、社内の専門知識が格段に高い
7.5 中国はレアアース市場における世界的優位性を維持するために戦略的に生産割当量を増やしている
7.6 中国は高価値商品の輸出国になることを目指している
8 世界の希土類元素(レアアース)市場
8.1 希土類元素の総売上高と生産高
8.2 地域別レアアース生産量
8.2.1 現在操業中の鉱山
8.2.1.1 バヤンオボ(中国
8.2.1.2 中国、Longnan
8.2.1.3 中国、Xunwu
8.2.1.4 インド
8.2.1.5 ブラジル、イースタン・コースト
8.2.1.6 マレーシア、ラハト
8.2.1.7 オーストラリア、マウント・ウェルド
8.2.1.8 アメリカ、マウンテン・パス
8.2.1.9 オーストラリア、ノーランズ
8.2.1.10 Steenkampskraal(南アフリカ
8.2.1.11 クヴァネフェルド(グリーンランド
8.2.1.12 ベトナム、ドンパオ
8.2.1.13 オーストラリア、ダボ・ジルコニア
8.2.2 操業鉱山の可能性
8.2.2.1 カナダ、ネチャラチョ
8.3 希土類元素の地域別消費量
8.3.1 中国
8.3.2 日本および北東アジア
8.3.3 米国
9 個々の希土類元素(レアアース)元素の需要と供給
9.1 近い将来供給不足に直面する元素
9.1.1 プラセオジム
9.1.1.1 元素の概要と供給リスク
9.1.1.2 供給と需要
9.1.2 ネオジム
9.1.2.1 元素の概要と供給リスク
9.1.2.2 供給と需要
9.2 近い将来に供給過剰となる元素
9.2.1 テルビウム
9.2.1.1 元素の概要と供給リスク
9.2.1.2 供給と需要
9.2.2 イットリウム
9.2.2.1 元素の概要と供給リスク
9.2.2.2 供給と需要
9.2.3 ランタン
9.2.3.1 元素の概要と供給リスク
9.2.3.2 供給と需要
9.2.4 セリウム
9.2.4.1 元素の概要と供給リスク
9.2.4.2 供給と需要
9.2.5 ジスプロシウム
9.2.5.1 元素の概要と供給リスク
9.2.5.2 供給と需要
9.2.6 サマリウム
9.2.6.1 元素の概要と供給リスク
9.2.6.2 供給と需要
9.2.7 ユーロピウム
9.2.7.1 元素の概要と供給リスク
9.2.7.2 供給と需要
10 用途別市場
10.1 磁石
10.2 ニッケル水素電池
10.3 自動車触媒
10.4 ディーゼルエンジン
10.5 流動クラッキング触媒
10.6 ホスファ
10.7 ガラス
10.8 研磨用粉末
10.9 その他の用途
11 イオン吸着粘土の採掘と加工の概要
11.1 現在の技術
11.2 RE酸化物の処理に伴う典型的なコスト
12 供給不足の可能性の克服
12.1 備蓄
12.2 リサイクル
12.3 代替
12.4 さまざまなレアアース消費者による材料不足戦略
13 競争状況

グローバル市場調査レポート販売サイトのwww.marketreport.jpです。

❖ レポートの目次 ❖

1 Preface
2 Scope and Methodology
2.1 Objectives of the Study
2.2 Stakeholders
2.3 Data Sources
2.3.1 Primary Sources
2.3.2 Secondary Sources
2.4 Market Estimation
2.4.1 Bottom-Up Approach
2.4.2 Top-Down Approach
2.5 Forecasting Methodology
3 Executive Summary
4 What are Rare Earth Elements?
5 Rare Earth Elements: Are they Really Rare?
5.1 Reserve Estimates
5.2 How Long Will They Last?
6 Rare Earth Elements: Mining Economics
6.1 Mine Valuation: Grades & Composition are Key
6.2 Development of a New Project: Can Take Several Years
6.3 Rare Earth Mining Costs: Largely Location and Grade Development
6.4 Infrastructure & Capital Costs
6.5 Operating Costs
6.6 Key Projects
6.6.1 Arafura Resources Limited-Noland Project
6.6.2 Nechalacho Rare Earth Elements Project
6.6.3 Kvanefjeld Project-Greenland Minerals & Energy Limited
6.6.4 Dubbo Zirconia-Alkane Resources Limited
6.7 Mining and Processing
6.7.1 Mining
6.7.2 Downstream Processing
6.8 Prices
6.8.1 Factors Affecting Rare Earth Element Prices
6.8.2 Historical Prices
6.8.3 Pricing Forecast
7 China’s Role in the Global Rare Earth Elements Market
7.1 China has a Monopoly Over Rare Earth Elements
7.2 Mining Costs in China Are Significantly Lower Than Other Rare Earth Producers
7.3 Miners Have Benefitted from the Lack of Proper Working Standards and Environmental Regulations
7.4 China Has a Significantly Higher In-house Expertise Compared to Other Rare Earth Producers
7.5 China is Strategically Increasing Production Quotas to Sustain Global Dominance in Rare Earth Elements Market
7.6 China Aims to Become an Exporter of Higher Value Goods
8 Global Rare Earth Elements Market
8.1 Total Sales and Production of Rare Earth Elements
8.2 Production of Rare Earth Elements by Region
8.2.1 Current Operational Mines
8.2.1.1 Bayan Obo, China
8.2.1.2 Longnan, China
8.2.1.3 Xunwu, China
8.2.1.4 India
8.2.1.5 Eastern Coast, Brazil
8.2.1.6 Lahat, Malaysia
8.2.1.7 Mt. Weld, Australia
8.2.1.8 Mountain Pass, United States
8.2.1.9 Nolans, Australia
8.2.1.10 Steenkampskraal, South Africa
8.2.1.11 Kvanefjeld, Greenland
8.2.1.12 Dong Pao, Vietnam
8.2.1.13 Dubbo Zirconia, Australia
8.2.2 Potential Operational Mines
8.2.2.1 Nechalacho, Canada
8.3 Consumption of Rare Earth Elements by Region
8.3.1 China
8.3.2 Japan & Northeast Asia
8.3.3 United States
9 Supply & Demand of Individual Rare Earth Elements
9.1 Elements that will Face Supply Shortages in the Near Future
9.1.1 Praseodymium
9.1.1.1 Elements Overview & Supply Risks
9.1.1.2 Supply & Demand
9.1.2 Neodymium
9.1.2.1 Elements Overview & Supply Risks
9.1.2.2 Supply & Demand
9.2 Elements that be Oversupplied in the Near Future
9.2.1 Terbium
9.2.1.1 Elements Overview & Supply Risks
9.2.1.2 Supply & Demand
9.2.2 Yttrium
9.2.2.1 Elements Overview & Supply Risks
9.2.2.2 Supply & Demand
9.2.3 Lanthanum
9.2.3.1 Elements Overview & Supply Risks
9.2.3.2 Supply & Demand
9.2.4 Cerium
9.2.4.1 Elements Overview & Supply Risks
9.2.4.2 Supply & Demand
9.2.5 Dysprosium
9.2.5.1 Elements Overview & Supply Risks
9.2.5.2 Supply & Demand
9.2.6 Samarium
9.2.6.1 Elements Overview & Supply Risks
9.2.6.2 Supply & Demand
9.2.7 Europium
9.2.7.1 Elements Overview & Supply Risks
9.2.7.2 Supply & Demand
10 Market by Application
10.1 Magnets
10.2 NiMH Batteries
10.3 Auto Catalysts
10.4 Diesel Engines
10.5 Fluid Cracking Catalyst
10.6 Phosphers
10.7 Glass
10.8 Polishing Powders
10.9 Other Applications
11 Overview on Mining and Processing of Ion-Adsorption Clays
11.1 Current Technologies
11.2 Typical Costs Involved With Processing RE Oxides
12 Overcoming the Potential Shortfalls in Supply
12.1 Stockpiling
12.2 Recycling
12.3 Substitution
12.4 Material Shortfall Strategies by Various Rare Earth Consumers
13 Competitive Landscape
13.1 Market Structure
13.2 Key Players
13.3 Profiles of Key Players
13.3.1 Lynas Corporation Ltd.
13.3.2 Arafura Resources Limited
13.3.3 Great Western Minerals Group Ltd.
13.3.4 Avalon Advanced Materials Inc.
13.3.5 Greenland Minerals Ltd
13.3.6 Alkane Resources Ltd
13.3.7 Neo Performance Materials
13.3.8 Iluka Resource Limited
13.3.9 IREL (India) Limited
13.3.10 Canada Rare Earths Corporation

Figure 1: Periodic Table Showing Rare Earth Elements
Figure 2: Topology of Rare Earth Elements
Figure 3: Global: Rare Earth Metal Reserves by Country (in Million Metric Tons), 2023
Figure 4: Global: Rare Earth Metal Reserves by Country (in %), 2023
Figure 5: Comparative Total Rare Earth Oxide Values of Various Rare Earth Mines
Figure 6: Kvanefjeld Project Capital Cost Estimated Breakdown
Figure 7: Global: Sources of Rare Earth Metals
Figure 8: Flow Chart: Concentration of Rare Earth Ores
Figure 9: Flow Chart: Extraction of Rare Earths from their Concentrated Ores
Figure 10: China & US: Average Labor Costs Per Hour (in US$), 2023
Figure 11: Global: Rare Earth Metals Production (in 000’ Metric Tons), 2018-2023
Figure 12: Global: Rare Earth Metals Market (in Billion US$), 2018-2023
Figure 13: Global: Rare Earth Metals Production Forecast (in 000’ Metric Tons), 2024-2032
Figure 14: Global: Rare Earth Metals Market Forecast (in Billion US$), 2024-2032
Figure 15: Global: Rare Earth Metals Production by Country (in %), 2023
Figure 16: Bayan Obo Rare Earth Mine: Composition of Various Elements (in %)
Figure 17: Longnan Rare Earth Mine: Composition of Various Elements (in %)
Figure 18: Xunwu Rare Earth Mine: Composition of Various Elements (in %)
Figure 19: India Rare Earth Mine: Composition of Various Elements (in %)
Figure 20: Eastern Coast Rare Earth Mine: Composition of Various Elements (in %)
Figure 21: Lahat Rare Earth Mine: Composition of Various Elements (in %)
Figure 22: Mt Weld Rare Earth Mine: Composition of Various Elements (in %)
Figure 23: Mountain Pass Rare Earth Mine: Composition of Various Elements (in %)
Figure 24: Nolans Rare Earth Mine: Composition of Various Elements (in %)
Figure 25: Steenkampskraal Rare Earth Mine: Composition of Various Elements (in %)
Figure 26: Kvanefjeld Rare Earth Mine: Composition of Various Elements (in %)
Figure 27: Dong Pao Rare Earth Mine: Composition of Various Elements (in %)
Figure 28: Dubbo Zirconia Rare Earth Mine: Composition of Various Elements (in %)
Figure 29: Nechalacho Rare Earth Mine: Composition of Various Elements (in %)
Figure 30: Global: Rare Earth Elements Consumption by Region (in %), 2023
Figure 31: Global: Rare Earth Elements Consumption by Region Forecast (in %), 2032
Figure 32: Praseodymium: Supply & Demand Balance (in Metric Tons), 2023
Figure 33: Praseodymium: Historical Prices (in US$/kg), 2018-2023
Figure 34: Praseodymium: Price Forecast (in US$/kg), 2024-2032
Figure 35: Neodymium: Supply & Demand Balance (in Metric Tons), 2023
Figure 36: Neodymium: Historical Prices (in US$/kg), 2018-2023
Figure 37: Neodymium: Price Forecast (in US$/kg), 2024-2032
Figure 38: Terbium: Supply & Demand Balance (in Metric Tons), 2023
Figure 39: Terbium: Historical Prices (in US$/kg), 2018-2023
Figure 40: Terbium: Price Forecast (in US$/kg), 2024-2032
Figure 41: Yttrium: Supply & Demand Balance (in Metric Tons), 2023
Figure 42: Yttrium: Historical Prices (in US$/kg), 2018-2023
Figure 43: Yttrium: Price Forecast (in US$/kg), 2024-2032
Figure 44: Lanthanum: Supply & Demand Balance (in Metric Tons), 2023
Figure 45: Lanthanum: Historical Prices (in US$/kg), 2018-2023
Figure 46: Lanthanum: Price Forecast (in US$/kg), 2024-2032
Figure 47: Cerium: Supply & Demand Balance (in Metric Tons), 2023
Figure 48: Cerium: Historical Prices (in US$/kg), 2018-2023
Figure 49: Cerium: Price Forecast (in US$/kg), 2024-2032
Figure 50: Dysprosium: Supply & Demand Balance (in Metric Tons), 2023
Figure 51: Dysprosium: Historical Prices (in US$/kg), 2018-2023
Figure 52: Dysprosium: Price Forecast (in US$/kg), 2024-2032
Figure 53: Samarium: Supply & Demand Balance (in Metric Tons), 2023
Figure 54: Samarium: Historical Prices (in US$/kg), 2018-2023
Figure 55: Samarium: Price Forecast (in US$/kg), 2024-2032
Figure 56: Europium: Supply & Demand Balance (in Metric Tons), 2023
Figure 57: Europium: Historical Prices (in US$/kg), 2018-2023
Figure 58: Europium: Price Forecast (in US$/kg), 2024-2032
Figure 59: Diesel Particulate Filter

★調査レポート[希土類元素(レアアース)のグローバル市場(2024~2032):磁石、ニッケル水素電池、自動車触媒、ディーゼルエンジン、その他] (コード:IMARC24MAR0128)販売に関する免責事項を必ずご確認ください。
★調査レポート[希土類元素(レアアース)のグローバル市場(2024~2032):磁石、ニッケル水素電池、自動車触媒、ディーゼルエンジン、その他]についてメールでお問い合わせ


◆H&Iグローバルリサーチのお客様(例)◆